StBound Tool

Approach combining stochastic bounds and histograms for performance analysis of queue

F. Aït-salaht¹, H. Castel-Taleb², J.M. Fourneau³ and N. Pekergin⁴

 ¹ LIP6, Université Paris Ouest, Nanterre, France {farah.ait-salaht}@lip6.fr
 ² SAMOVAR, UMR 5157, Télécom Sud Paris, Evry, France hind.castel@telecom-sudparis.eu
 ³ DAVID, Université de Versailles-Saint-Quentin, France jean-michel.fourneau@uvsq.fr
 ⁴ LACL, Université Paris Est, France nihal.pekergin@u-pec.fr

1 Installation

The **StBound** tool is composed by two applications "**BHa** and **ASingle_Queue**" implemented with Matlab 2012a. They were subsequently compiled, using the Matlab compiler, into a program that can be run outside of Matlab environment (in the form of Windows executables (.exe)).

Our applications are therefore available in two forms : an open-source Matlab application (Matlab license required) and a stand-alone Java executable (free).

1.1 Requirements

With MATLAB

- Verify that the MATLAB Compiler Runtime (MCR) is installed
- If the MCR is not installed, run MCRInstaller.exe provided in archived files "BHa.zip" or "ASingle_Queue.zip"

Without Matlab

- In order to run these executable programs, an appropriate version of the MCRInstaller (we provide Windows version) has to be downloaded from archived file "*BHa.zip*" or "*ASingle_Queue.zip*"
- User can also download MCR Matlab Compiler Runtime for free from the Mathworks website
- Installation of the MCR (for Windows) : Double-click on the *MCRInstaller.exe* and follow the instructions

Once the MCR is installed on a user machine, the MCR Installer never needs to be ran again.

For more information on the MCR Installer, see the MATLAB Compiler documentation.

1.2 Installation

- Download the **StBound.zip** archive.
- Unzip it somewhere on your computer.

1.3 Getting started

- Left-click on Program_pkg.exe. This will unpack the files.
- Left-click on Program.exe to run. Note that it may take around 30 sec to load when running it for the first time.

2 BHa application : Bounding Histogram approach

"Real traffic traces, histograms and stochastic bounding approach"

2. HBSP method-			
Reduction size bins			
Do it Reset Expected reward View histogram data Plot resulting histogram			
Iding Histogram-			
Initial histogram Browse			
Aethod: Optimal lower bound			
Do it Reset			

A picture of the main window is given below :

FIG. 1 – The main window BHa application

This application includes three programs :

- **1. Derive Histogram from Trace :** construct the histogram (discrete distribution) corresponding to the input trace.
- 2. HBSP method : derive HBSP histogram method developed by Hernández-Orallo [1].
- 3. Stochastic Bounding Histogram : for an input histogram defined on N states, this program allows to compute stochastic bounding histogram defined on reduced size $K \ll N$ using the following methods : Optimal [2], Greedy[2] or Tancrez [3] approaches.

We detail below these different components.

2.1	\mathbf{First}	program	: Deri	ive histog	ram from	trace
-----	------------------	---------	--------	------------	----------	-------

BHa al traffic traces, histograms and stochastic bounding approach	
I. Derive Histogram form Trace- Input Traffic trace Browse	-2. HBSP method-
Discretization Data unit Lower Disable Do it Reset Expected Reward: View histogram data Plot resulting histogram	Reduction size bins Do it Reset Output
- Input	ding Histogram-
Reduction Size: bins M	ethod: Optimal lower bound Do it Reset
Expected reward * View histogram data Plot	resulting histogram

FIG. 2 – Derive histogram from trace program.

2.1.1 Input parameters

1. Trace data file. Insert the trace file.

1. Derive Histogram form Trace-V			
Traffic trace	Browse		

This file must respect the following format :

% NameTraceFile.txt

number of state in the trace number of bits in the first T period number of bits in the second T period

Example. Example of trace defined on five frames and saved in *data.txt* file.

% data.txt

5 4 9

- 1 12 6
- 2. **Discretization.** If the user wants apply a discretization on the input trace he should set the data unit value and select the kind of bound he want to employ for his resolution, otherwise he checks the box **Disable**.

2.1.2 Output parameters

By pushing **Do it** button, the program returns the following results :

- Expected reward of a histogram corresponding to the input trace
- A file containing the histogram corresponding to the input traffic trace. Depending on the type of discretization used, the following file will be created :
 - Hist_trace.txt, if the user do not use discretisation and button Disable is checked
 - Hist_trace_L, if we apply discretisation on lower bound
 - Hist_trace_U, if we apply discretisation on upper bound
 - These files have the following format :

% Hist_trace.txt

```
number of state in the histogram
state1 probability of state1
state2 probability of state2
...
...
```

 The program also allows to view the obtained histogram by clicking on View histogram data button.

One input example $(T_Mawi2007F_40ms1h.txt)$ is included in "Input_Output" folder for testing purposes.

I traffic traces, histograms and stochastic bounding approach	
	2. HBSP method-IV
Discretization Data unit Lower Disable Do it Reset Output Expected Reward: View histogram data Plot resulting histogram	Reduction size bins Do it Reset Output
3. Stochastic Bound Input- Initial histogram Reduction Size: bins M	In the second se
Output Expected reward view histogram data	Do it Reset

2.2 Second program : HBSP method

FIG. 3 – HBSP method program.

2.2.1 Input parameters

- Trace data file
- Size of reduction : bins

2.2.2 Output parameters

By pushing **Do it** button, the program returns the following results :

- The expected reward of the resulting HBSP histogram
- The execution time in second (*i.e.* the time required to compute the HBSP histogram)
- A file named "HBSP_hist.txt" containing the HBSP histogram. This file will be created in "Input_Output" folder
- The program also allows to view the obtained histogram by clicking on *View histogram* data button and plot the histogram by clicking on *Plot resulting histogram* button

2.2.3 Example

Considering **T_Mawi2007F_40ms1h.txt** file (included in "Input_Output" folder) containing the MAWI traffic trace [4], the execution of the second program allows us to obtain the results illustrated below.

FIG. 4 – HBSP method program.

BHa	
al traffic traces, histograms and stochastic bounding approach	
	2. HBSP method – Input Traffic trace C:\Users\FARAH\Desktop\Interface finale\Bounding Reduction size 10
Output Expected Reward: View histogram data Plot resulting histogram	Do it Reset Output 4.37565e+06 View histogram data Plot resulting histogram
Input Initial histogram Reduction Size: bins Me	ethod: Optimal lower bound
Output Expected reward View histogram data	Do it Reset

2.3 Third program : Stochastic Bounding Histogram

FIG. 5 – Stochastic Bounding Histogram program.

2.3.1 Input parameters

- Initial histogram file
- Reduction size and reduction method (Optimal lower bound, Optimal upper bound, Greedy lower bound, Greedy upper bound and Tancrez upper bound)

2.3.2 Output parameters

By pushing **Do it** button, the program returns the following results :

- The expected reward of the bounding histogram
- The execution time in second (*i.e.* the time required to compute the resulting histogram)
- A file containing the bounding histogram. Depending on the type of the method we employed, the following file will be created :
 - OptLowerBoundHist.txt, for the Optimal lower bound
 - **OptUpperBoundHist.txt**, for the Optimal upper bound
 - GreedyLowerBoundHist.txt, for the Greedy lower bound
 - GreedyUpperBoundHist.txt, for the Greedy upper bound
 - TancrezUpperBoundHist.txt, for the Tancrez upper bound

We note that these files will be created in "Input_Output" folder.

 The program also allows to view the obtained histogram by clicking on View histogram data button and plot the histogram by clicking on Plot resulting histogram button

One input example (**Hist_trace_L.txt**) is included in "Input_Output" folder for testing this program valid for the lower bound method.

Figures - Resulting histogram				
File Edit View Insert Tools Debug Desktop Window Help	X 5 K	2		
1 2 2 3 3 8 3 3 7 3 2 4 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	80870			
Resulting histogram ×		2. HBSP method-		
0.2				
	se	Traffic trace finale/Bounding Browse		
0.15 -	sable	Reduction size 10		
ti i i i i i i i i i i i i i i i i i i				
2 10 0.1 -	set	Do it Reset		
<u>_</u>		Output		
0.05 -		Expected reward v 4.37565e+06		
-1 0 1 2 3 4	5 6	View histogram data Plot resulting histogram		
	x 10			
	e. etconuosi¢ Bound	ding Histogram-🗹 ————————————————————————————————————		
Initial histogram	C:\Users\FARAH\Desktop\Interface	e finale\Bounding trace Litt Browse		
Reduction	approachaiput_outputanst_			
Size	: 10 M	ethod: Optimal lower bound		
		Do it Peset		
- Output				
Expected re	ward 💌	4.1682e+06		
	/iew histogram data Plot r	esulting histogram		

FIG. 6 – Example.

3 Analysis of single queue

In order to analyze the model of a single queue illustrated in Figure 7, we developped an application called **ASingle_Queue** presented in Figure 8.

FIG. 7 – Input and output parameters of a queueing model.

ASingle_Queue					
Analysis of a single queue					
Input					
Arrival histogram	Browse				
Service capacity Select					
Input service capacity	Input service histogram				
	Browse				
Buffer length					
	Do it Reset				
Output					
Plot distribution Buffer occupancy histogram	View histogram data				
1	Other results				
0.8 -	Expected buffer occupancy				
0.6	Expected departure data				
0.4 -	Loss probability				
0.2	Blocking probability				
0 0.2 0.4 0.6 0.8 1	Computation time (s)				

FIG. 8 – ASingle_Queue application.

3.0.3 Input parameters

- Arrival histogram file
- $-\,$ Kind of service :
 - Deterministic. In that case, the user should introduce the service capacity
 - **Variable**, *i.e.* discrete distribution (histogram). Here, the user should introduce the service histogram file
- Buffer length

3.0.4 Output parameters

By pushing **Do it** button, the program returns the following results :

- The expected buffer occupancy
- Expected departure data
- Loss probability
- Blocking probability
- The computation time in second (*ie.* the time required to compute all performance measures of the queue)
- Creation of the following files :
 - BufferOccupancyHist.txt, contains the Buffer occupancy histogram
 - **DepartureHist.txt**, contains Departure histogram
 - LossesHist.txt, contains Losses histogram
- View the different cumulative distribution function of the output histograms (illustrated on the graphic)
- The program also allows to view the obtained histogram (couple : [state, probability]) by clicking on *View histogram data* button

3.1 Example

We consider a single queue with arrival histogram corresponding to the optimal lower bound with number of bins equal to 20. The service is assumed deterministic with capacity equal to 4.4×10^6 bits (*ie.* 110 Mbs with sampling period T=40ms) and the buffer length is set to 10^6 bits.

The use of **ASingle_Queue** application allows us to evaluate the performance of an isolated queue as illustrate in the following figure.

ASingle_Queue	UNIO I DIAL			
Analysis of a single queue				
-Input	-	• •		
Arrival histogram	Arrival histogram C:\Users\FARAH\Desktop\Interface finale\IG file d'attente\Inout Outout\Hist trace L.txt Browse			
Service capacity Deterministic				
	Input service capacity 4.4*10^6	- Input service histogram-	Browse	
Buffer length	10^6			
Do it Reset Plot distribution Losses histogram View histogram data				
10 [°] Other results				
		Expected buffer occupancy	467780	
ability		Expected departure data	4.19791e+06	
Prop		Loss probability	0.0407129	
		Blocking probability	0.285994	
0 1	2 3 4 Load v 10 ⁶	Computation time (s)	0.391617	
	X 10		_	

FIG. 9 – Analysis of single queue.

4 References

[1] E. Hernández-Orallo and J. Vila-Carbó. A histogram-based stochastic process for finite buffer occupancy analysis. In VALUETOOLS, page 44, 2007.

[2] F. Aït-Salaht, J. Cohen, H. Castel Taleb, J. M. Fourneau, and N. Pekergin. Accuracy vs. complexity : the stochastic bound approach. In 11th International Workshop on Disrete Event Systems (WODES 2012), number 8, pages 343-348, 2012.

[3] J. S. Tancrez, P. Semal, and P. Chevalier. Histogram based bounds and approximations for production lines. European Journal of Operational Research, 197(3) : 1133–1141, 2009.

[4] Kenjiro Cho Sony and Kenjiro Cho. Traffic data repository at the wide project. In In Proceedings of USENIX 2000 Annual Technical Conference : FREENIX Track, pages 263–270, 2000.

[5] F. Aït-Salaht, H. Castel Taleb, J. M. Fourneau, et N. Pekergin. Stochastic bounds and histograms for network performance analysis. In 10th European Workshop on Performance Engineering (EPEW'13), volume 8168, pages 13–27, 2013.

[6] F. Aït-Salaht, H. Castel Taleb, J. M. Fourneau, et N. Pekergin. A bounding histogram approach for network performance analysis. In 15th IEEE International Conference on High Performance Computing and Communications (HPCC'13), China, 2013.