Stochastic bounds on performance measures for threshold-based queueing system with hysteresis : Application to cloud computing

Farah AIT SALAHT

INSTITUT TELECOM/ Télécom SudParis Lab. SAMOVAR, 9, rue Charles Fourier, 91011 Evry Cedex, France

Joint Work with H. CASTEL (SAMOVAR, Telecom SudParis)

GDT COS, Toulouse, September 10th, 2015

S@movar CNRS Institut TELECO?

OUTLINE

1 MOTIVATION

- 2 MODELING CLOUD DATA CENTER
- **3** STOCHASTIC BOUNDING SYSTEMS
- **4** NUMERICAL RESULTS
- 5 CONCLUSION

MOTIVATION

MODELING CLOUD DATA CENTER STOCHASTIC BOUNDING SYSTEMS NUMERICAL RESULTS CONCLUSION

OUTLINE

1 MOTIVATION

- 2 MODELING CLOUD DATA CENTER
- **3 STOCHASTIC BOUNDING SYSTEMS**
- **4 NUMERICAL RESULTS**
- 5 CONCLUSION

MOTIVATION

MODELING CLOUD DATA CENTER STOCHASTIC BOUNDING SYSTEMS NUMERICAL RESULTS CONCLUSION

CLOUD COMPUTING - CLOUD ARCHITECTURES

MOTIVATION

MODELING CLOUD DATA CENTER STOCHASTIC BOUNDING SYSTEMS NUMERICAL RESULTS CONCLUSION

CLOUD COMPUTING - CLOUD ARCHITECTURES

CLOUD COMPUTING - CLOUD ARCHITECTURES

BASIC IDEAS :

- A flexible architecture, a pool of virtualized resources depending on the demand
- Dynamicity of resources according to the scalability of the demand
- Load-Dependent Activation / Deactivation of VMs

GOAL:

- Definition of a queueing model which represents the dynamicity of the system
- Performance : Meeting SLA (Service Level Agreements) Requirements
- Reduce energy consumption (Energy Saving) and cost due to the activation of VMs

OUTLINE

1 MOTIVATION

2 MODELING CLOUD DATA CENTER

3 STOCHASTIC BOUNDING SYSTEMS

4 NUMERICAL RESULTS

5 CONCLUSION

MODELING CLOUD DATA CENTER

BASIC MODEL :

- Multi-Server Model for DC (Data Center)
- ► *K* homogeneous VMs
- Activation/Deactivation of VMs within each DC (state-dependent)
- Focus only on the number of jobs in DC

MODELING CLOUD DATA CENTER

BASIC MODEL :

- Multi-Server Model for DC (Data Center)
- ► *K* homogeneous VMs
- Activation/Deactivation of VMs within each DC (state-dependent)
- Focus only on the number of jobs in DC
- Threshold-based queueing system with hysteresis
- Avoid costly and frequent oscillations around the threshold

MODELING CLOUD DATA CENTER

INDIVIDUAL DC MODEL

► K multi-server thresholds-based queueing system with hysteresis

MODELING CLOUD DATA CENTER

- K multi-server thresholds-based queueing system with hysteresis
- ▶ forward thresholds $(F_1, F_2, ..., F_{K-1})$ and reverse thresholds $(R_1, R_2, ..., R_{K-1})$

MODELING CLOUD DATA CENTER

- K multi-server thresholds-based queueing system with hysteresis
- ▶ forward thresholds $(F_1, F_2, ..., F_{K-1})$ and reverse thresholds $(R_1, R_2, ..., R_{K-1})$

- K multi-server thresholds-based queueing system with hysteresis
- ▶ forward thresholds $(F_1, F_2, ..., F_{K-1})$ and reverse thresholds $(R_1, R_2, ..., R_{K-1})$
- ▶ $F_1 < F_2 < \ldots < F_{K-1}, R_1 < R_2 < \ldots < R_{K-1}, \text{ and } R_i < F_i, \forall 1 \le i \le K-1.$

- K multi-server thresholds-based queueing system with hysteresis
- ▶ forward thresholds $(F_1, F_2, ..., F_{K-1})$ and reverse thresholds $(R_1, R_2, ..., R_{K-1})$
- ▶ $F_1 < F_2 < \ldots < F_{K-1}, R_1 < R_2 < \ldots < R_{K-1}, \text{ and } R_i < F_i, \forall 1 \le i \le K-1.$

- K multi-server thresholds-based queueing system with hysteresis
- ▶ forward thresholds $(F_1, F_2, ..., F_{K-1})$ and reverse thresholds $(R_1, R_2, ..., R_{K-1})$
- ▶ $F_1 < F_2 < \ldots < F_{K-1}, R_1 < R_2 < \ldots < R_{K-1}, \text{ and } R_i < F_i, \forall 1 \le i \le K-1.$

MODELING CLOUD DATA CENTER

Depending on the arrival process we distinguish the following two cases :

Homogeneous servers with Poisson arrivals

 F. AïT-SALAHT, H. CASTEL-TALEB. The threshold based queueing system with hysteresis for performance analysis of clouds. The 2015 IEEE International Conference on Computer, Information and Telecommunication Systems (CITS 2015), Gijón, Spain.

2 Homogeneous servers with Batch-Arrival process

 F. AïT-SALAHT, H. CASTEL-TALEB. Stochastic bounding models for performance analysis of clouds. The 15th IEEE International Conference on Computer and Information Technology (CIT 2015), Liverpool, UK.

MODELING CLOUD DATA CENTER

Depending on the arrival process we distinguish the following two cases :

Homogeneous servers with Poisson arrivals

 F. AïT-SALAHT, H. CASTEL-TALEB. The threshold based queueing system with hysteresis for performance analysis of clouds. The 2015 IEEE International Conference on Computer, Information and Telecommunication Systems (CITS 2015), Gijón, Spain.

2 Homogeneous servers with Batch-Arrival process

• F. AÏT-SALAHT, H. CASTEL-TALEB. Stochastic bounding models for performance analysis of clouds. The 15th IEEE International Conference on Computer and Information Technology (CIT 2015), Liverpool, UK.

(2) Hysteresis queue with homogeneous servers and Batch-Arrival process

► Each arrival event corresponds to a batch arrival of size g_i , where $g_i = \Pr[\text{arrival of i jobs}], i \ge 1.$

(2) Hysteresis queue with homogeneous servers and Batch-Arrival process

► Each arrival event corresponds to a batch arrival of size g_i , where $g_i = \Pr[\text{arrival of i jobs}], i \ge 1.$

(2) Hysteresis queue with homogeneous servers and Batch-Arrival process

► Each arrival event corresponds to a batch arrival of size g_i , where $g_i = \Pr[\text{arrival of i jobs}], i \ge 1.$

 λ : Arrival Rate (Requests, Jobs, ...) μ : Service Rate of a Server

FIGURE : Example of state transition graph for a three-servers system

Modeling cloud data center

Threshold-based queueing system with hysteresis, homogeneous servers

and Batch-Arrival process

Numerical evaluation :

- Two-dimensional space of a continuous-time Markov chains
- Mathematical analysis :
 - There may not exist a closed-form solution
 - Numerically too complex

Modeling cloud data center

Threshold-based queueing system with hysteresis, homogeneous servers

and Batch-Arrival process

Numerical evaluation :

- Two-dimensional space of a continuous-time Markov chains
- Mathematical analysis :
 - There may not exist a closed-form solution
 - Numerically too complex
 - Proposition : Use Stochastic bounds on Batch-arrival distribution

OUTLINE

1 MOTIVATION

- 2 MODELING CLOUD DATA CENTER
- **3** STOCHASTIC BOUNDING SYSTEMS
- **4 NUMERICAL RESULTS**

5 CONCLUSION

Stochastic bounding systems

Motivation :

- Reduce the complexity of the model
- Control of the complexity and Trade-off between accuracy and complexity (by changing distribution sizes)

Methodology :

- Use stochastic bound theory to reduce the size of the input distribution
- Stochastic bound : a bound of the exact distribution
- ▶ It implies **Bounds** on performance measures which are non decreasing rewards

A Brief Introduction to Stochastic Ordering

- $\mathscr{G} = 1, 2, ..., n$ a finite state space, X, Y: discrete distributions over \mathscr{G} , $p_X(i) = prob(X = i)$ and $p_Y(i) = prob(Y = i)$ for $i \in G$.
- **Definition of** \leq_{st} **order :**

$$X \leq_{st} Y$$
 iff $\sum_{k=i}^{n} p_X(k) \leq \sum_{k=i}^{n} p_Y(k), \quad \forall i$

Comparison of non decreasing rewards :

$$X \leq_{st} Y \Longleftrightarrow E[f(X)] \leq E[f(Y)]$$

for all non decreasing functions f, whenever expectations exist.

• Let F_X and F_Y be the cumulative distribution fonctions of X and Y respectively. Then,

$$X \leq_{st} Y \iff F_X(a) \geq F_Y(a); \ \forall a \in \mathscr{G}$$

A Brief Introduction to Stochastic Ordering

-The pmfs of a discrete distributions X and Y-

-Cumulative distribution functions-

FIGURE : $\mathscr{G} = \{1, 2, ..., 7\}, p_X = [0.1, 0.2, 0.1, 0.2, 0.05, 0.1, 0.25]$ et $p_Y = [0, 0.25, 0.05, 0.1, 0.15, 0.15, 0.3].$

Stochastic bounds on distributions

- ▶ Hypothesis : totally ordered state space G, with length N
- We have Discrete distribution *d* and positive increasing reward *r*, with $R[d] = \sum r(i)d(i)$
- ► Compute dI et d2 such that : $d2 \leq_{st} d \leq_{st} d1$,
 - 2 *d*1 and *d*2 have only K << N states (not necessarily the same set); *d*1 has a support \mathcal{H}^u and *d*2 has a support \mathcal{H}^l ,
 - 3 $\sum_{i \in \mathscr{H}} \mathbf{r}(i) \mathbf{d}(i) \sum_{i \in \mathscr{H}^l} \mathbf{r}(i) \mathbf{d}^2(i)$ is minimal among the lower bounding distributions of \mathbf{d} with K states,
 - 4 $\sum_{i \in \mathscr{H}^u} r(i) d1(i) \sum_{i \in \mathscr{H}} r(i) d(i)$ is minimal among the upper bounding distributions of d with K states,

Optimal bounds, dynamic Programming

- Graph theory problem
- We consider a weighted graph G = (V, E) with :
 - ► Lower bound : $w(e) = \sum_{j \in \mathscr{H}: u < j < v} d(j)(r(j) r(u))$
 - ▶ Upper bound : $w(e) = \sum_{j \in \mathscr{H}: u < j < v} d(j)(r(v) r(j))$
- Compute optimal bound \equiv Compute a path of length *K* (*K* << *N*) with minimum cost in a graph *G*. Algorithm based on dynamic programming with complexity : $O(N^2K)$.
- The probability mass of deleted nodes is summed with
 - ► Lower bound : immediate predecessors
 - ► Upper bound : immediate successors

Example : Optimal upper bound

 \mathscr{A} : is a discrete distribution defined on $\{0, 2, 3, 5, 7\}$ with probability vector [0.05, 0.3, 0.15, 0.2, 0.3]. r: reward function, $r(a_i) = a_i$, $R[\mathscr{A}] = \sum_{a_i \in \mathbf{A}} r(a_i) p_{\mathbf{A}}(i) = 4.15$.

▶ Compute the Optimal Upper Bound $\overline{\mathscr{A}}$ on 3 states such that $R[\overline{\mathscr{A}}] - R[\mathscr{A}]$ is minimal.

Example : Optimal upper bound

 \mathscr{A} : is a discrete distribution defined on $\{0, 2, 3, 5, 7\}$ with probability vector [0.05, 0.3, 0.15, 0.2, 0.3]. r: reward function, $r(a_i) = a_i$, $R[\mathscr{A}] = \sum_{a_i \in \mathbf{A}} r(a_i) p_{\mathbf{A}}(i) = 4.15$.

▶ Compute the Optimal Upper Bound $\overline{\mathscr{A}}$ on 3 states such that $R[\overline{\mathscr{A}}] - R[\mathscr{A}]$ is minimal.

Bounding distribution [0.35, 0.35, 0.3] with support $\{2, 5, 7\}$ and $R[\overline{\mathscr{A}}] = 4.55$.

THEORETICAL RESULTS

STOCHASTIC COMPARISON

We denote by :

- X(t) : Markov chain of Hysteresis model
- $X^{u}(t)$: Markov chain associated to the Hysteresis model with upper bound batch-arrival distribution
- $X^{l}(t)$: Markov chain associated to the Hysteresis model with lower bound batch-arrival distribution

The stochastic comparisons of processes by mapping functions is defined as follows :

$$g(X(0)) \leq_{st} g(X^u(0)) \Rightarrow g(X(t)) \leq_{st} g(X^u(t)), t > 0.$$

2
$$g(X^{l}(0)) \leq_{st} g(X(0)) \Rightarrow g(X^{l}(t)) \leq_{st} g(X(t)), t > 0.$$

► Stochastic bound on arrival process ⇒ bound on performance measures

NUMERICAL EVALUATION

We have to solve the steady-state distribution of the chains

- ▶ Use solution techniques (GTH, Power Method...) on CTMC transition matrix
- Use the fundamental solutions of Lui/Golubchik by Stochastic Complement Analysis
- Bounding systems are Less complex when the size of input distribution is small (sparse matrices)

OUTLINE

1 MOTIVATION

- 2 MODELING CLOUD DATA CENTER
- **3 STOCHASTIC BOUNDING SYSTEMS**
- **4** NUMERICAL RESULTS

5 CONCLUSION

NUMERICAL RESULTS

Threshold-based queueing system with hysteresis and batch-arrival, such that the distribution of the batch arrivals is randomly generated on a support {1, 2, 3, ..., 500}.

- Vary some input parameters :
 - Buffer size
 - Arrival rate
 - Degree of virtualization (number of servers)

Some performance measures versus buffer size

Number of servers is K = 10. For $B_1 = 1000$, $F_1 = [90, 140, 280, 400, 610, 690, 730, 840, 910]$ and $R_1 = [30, 90, 190, 270, 410, 510, 620, 700, 800]$. for $B = i \times 1000$, $F_i = i \times F$ and $R_i = i \times R$.

Some performance measures versus arrival rate

Number of servers is K = 10. For B = 1000, F = (90, 140, 280, 400, 610, 690, 730, 840, 910) and R = (30, 90, 190, 270, 410, 510, 620, 700, 800).

Some performance measures versus number of servers

 $B = 2000, F = \left(\left\lfloor \frac{B}{K} \right\rfloor, 2 \times \left\lfloor \frac{B}{K} \right\rfloor, \dots, (K-1) \times \left\lfloor \frac{B}{K} \right\rfloor \right) \text{ and } R_i = F_i - \left\lfloor \frac{B}{2K} \right\rfloor, \text{ for } i = 1, \dots, K-1.$

OUTLINE

1 MOTIVATION

- 2 MODELING CLOUD DATA CENTER
- **3 STOCHASTIC BOUNDING SYSTEMS**
- **4 NUMERICAL RESULTS**

5 CONCLUSION

CONCLUSION

- Represent the dynamicity of the resource according to the queue occupation (Hysteresis model)
- Propose to use stochastic ordering in order to derive bounds for the performance measures
- Illustrate the relevance of using stochastic bounds on batch-arrival distribution on performance measures and computation complexity
- Proposed stochastic bounding models are relevant for network dimensioning

Future work

- Define optimal threshold vectors
- Markov Modulated Arrivals
- Heterogeneous servers