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Abstract-Considering a cloud system, we propose in this 
paper to apply bounding aggregations for mathematical analysis 
of a data center. Modeled as a hysteresis queueing system, a 
data center is characterized by forward and backward thresholds 
which allow to represent its dynamic behavior. The client requests 
(or jobs) are represented by bulk arrivals which arrive into the 
buffers and are executed by Virtual Machines (VMs). According 
to the occupation of the queue and the thresholds, the VMs are 
activated and deactivated. The system is represented by a complex 
Markov chain which is difficult to analyze when the size of the sys-
tem is huge. We propose to use in this case bounding aggregations 
on the batch arrivals, in order to compute performance measure 
bounds. We present some numerical results for the performance 
measures in order to compare the bounding values with the exact 
ones according to the different input parameters. The relevance 
of this paper is to propose a tradeoff between computational 
complexity and accuracy of the results, which provides very 
interesting solutions in networking dimensioning. 

1. INTRODUCTION 

One of the most significant recent progresses in the field 
of information and communication technology is Cloud com-
puting, which may change the way people do computing and 
manage information. In this environment, a pool of abstracted, 
virtualized, dynamically-scalable computing functions and ser-
vices are made accessible over the internet to remote users 
in an on-demand fashion, without the need for infrastructure 
investments and maintenance. 

Virtualization plays a key role in the success of cloud 
computing because it simplifies the delivery of the services by 
providing a platform for resources in a scalable manner. One 
physical host can have more than one VM (Virtual Machine: it 
is a software that can run its own operating system and appli-
cations just like an operating system on a physical computer) . 
With this flexibility, the cloud providers can rent the virtual 
machines depending on the demand and can gain more profit 
out of a single physical machine. With virtualization, service 
providers can ensure isolation of multiple user workloads, 
provide resources in a cost-effective manner by consolidating 
VMs onto fewer physical resources when system load is low, 
and quickly scale up workloads to more physical resources 
when system load is high. In [9], they study the right ratio 
of VM instances to physical processors that optimizes the 
workload's performance given a workload and a set of physical 
computing resources. 

Performance evaluation of cloud centers is an important 
research task which becomes difficult because the dynamic 
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nature of cloud environments and diversity of user requests. 
Then, it is not surprising that in the recent area of cloud 
computing, only a portion of research results has been devoted 
to performance evaluation. In [5] , they develop an analytical 
model in order to evaluate the performance of cloud centers 
with a high degree of virtualization and Poisson batch arrivals. 
The model of the physical machine with m VMs is based 
on the M [x] IG Imlm + r queue. They derive exact formulas 
for performance measures as blocking probability and mean 
waiting time of tasks. In [6], they consider a cloud center with 
a number of physical machines that are allocated to users in the 
order of task arrivals. Physical Machines (PMs) are considered 
with a high degree of virtualization, and are categorized into 
three server pools: hot, warm, and cold. The authors implement 
the sub-models using interactive Continuous Time Markov 
Chain (CTMC). The sub-models are interactive such that the 
output of one sub-model is input to the other one. 

In this paper, we propose to use a mathematical model 
in order to evaluate the performance of a cloud node, more 
precisely, a data center. We represent the system by a queueing 
model based on queue-dependent virtual machines in order 
to analyse quantitatively the dynamic behavior of the data 
center. The data center is represented by a set of PM (Physical 
Machines) hosting a set of VMs which are instanced according 
to user demand. In this paper, we represent the data center as 
a set of VMs which could be very large, especially if the user 
demand is high. With this model, virtual machines are activated 
and deactivated according to the intensity of user demand. 
The queueing model is a multi-server with threshold queues 
and hysteresis [4] . We suppose that customer request arrivals 
follow a bulk process. Each server represents a VM, and the 
multi-server queueing model with hysteresis is governed by a 
sequence of forward and reverse thresholds which are different. 
The forward (resp. the backward) thresholds represent the 
value of the number of customers from which an additional 
VM is activated (resp. deactivated). Obviously, the relevance 
of this model is to offer the flexibility of different thresholds 
for activating and removing VMs. 

As the system is difficult to analyze exactly, especially 
when the number of VMs or the size of bulk arrivals is high, 
we propose to use stochastic comparisons in order to compute 
more easily, and so faster performance measure bounds. 

The bounding models are obtained by the simplification 
of the hysteresis model in order to compute easily the per-
formance measures. We propose to simplify the batch arrival 
process by generating aggregated bounding processes. So the 
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bounding systems are equivalent to the hysteresis system 
with aggregated bounding arrival process. We derive an upper 
bounding system ( resp. a lower bounding system) from an up-
per bound batch arrival distribution (resp. a lower bound batch 
arrival distribution) . We prove using stochastic comparisons 
that these processes provide really bounds for performance 
measures as blocking probabilities, expected buffer length and 
expected departure. 

We give some numerical values according to different 
values of input parameters: arrival rate, size batches, and the 
number of VMs (called the degree of virtualization). The 
results show clearly the relevance of our approach to propose 
a tradeoff between computational complexity and accuracy of 
results. So it can efficiently solve the network dimensioning 
problem from QoS (Quality of Service) constraint require-
ments. 

The paper is organized as follows: next, we describe the 
cloud system, and in section III, we present the queueing 
model for the analysis. In section IV, we give some theoretical 
notions of the stochastic ordering theory and in section V, we 
give the bounding models and we prove using the stochastic 
comparisons that they represent really bounds. In the section 
VI, we give numerical results of the performance measures. 
Finally, achieved results are discussed in the conclusion and 
comments about further research issues are given. 

II. CLOUD SYSTEM DESCRIPTION 

The system under study is a cloud center, which contains 
several data centers. Customer requests arrive from different 
devices ( mobile phones, laptops, computers) to the system, 
and the cloud service orchestrator dispatches the job into the 
data center in order to provide service. The data center is a 
set of resources or PM (Physical Machines) each of which 
can host a lot of VMs (Virtual Machines), as shown in Fig 
1. Different users may share a PM (Physical Machine) using 
virtualization technique which provides a well defined set of 
resources (as CPU, RAM, storage). The VMs provide service 
for customer requests. We focus our study on one data center, 
and we propose to represent it by a stochastic model based 
on a queueing system which captures the dynamicity of the 
resource provisioning according to the current workload. 

Fig. l. Cloud center architecture 

This system provides the dynamicity of the service accord-
ing to the scalability of user requests. In order to have a system 
able to handle the variability of the traffic intensity, the VM are 
activated and deactivated according to the system occupancy. 
In fact, the buffer management is defined by thresholds for the 
number of customers waiting in the queue, which activate or 

deactivate the VMs. Clearly, when the number of customers in 
the queue reaches a threshold, then a new VM is activated, and 
when it decreases below the threshold, a VM is deactivated. 
In the next section, we present in details the queueing model 
used for the analysis of the performance of the data center. 

III. MODEL DESCRIPTION 

We consider a finite buffer capacity with multi-
homogeneous servers (VMs) . We suppose a K multi-server 
thresholds-based queueing system with hysteresis for which a 
set of forward thresholds (Fl ' F2, ... , F K - 1) and a set of re-
verse thresholds (Rl ' R2, ... , RK - l ) are defined. We assume 
that Fl < F2 < ... < FK - l , Rl < R2 < ... < R K - l , 

and R i < Fi , VI ::; i ::; K - 1. The behavior of this system 
is as follows. We assume that the first VM is still active in 
the system. If a customer arrives in the system, and finds Fi 

(i = 1, ... ,K - 1) customers in the system, then an additional 
VM will be activated. When a customer leaves the system 
with R i (i = 1, . . . , K - 1) customers, then a VM will be 
deactivated from the active VMs. We denote by X(t) the 
model where each state is represented by (Xl ,X2) , with Xl is 
the number of customers waiting in the system and X2 is the 
number of active VMs. We suppose that client request arrivals, 
follow a bulk-arrival process. So, we consider that requests are 
bulks (or batches), which arrive according to a Poisson process 
with rate A, and size of bulks follow a probability distribution 
P = (PI ,'" ,Pk ,'" ,Pn), defined as follows: 

Pk = Pr[bulk size is k , k E £] 

where £ c N, and we suppose that the size of £ is n. 

Servers (or VMs) have an exponential service time dis-
tribution with mean rate /-ii = /-i (i = 1, .. . ,K) . We suppose 
that the system has a finite capacity C. With these assumptions, 
we deduce that the system X(t) is a Continuous-Time Markov 
Chains (CTMCs) defined over the state space A such that: 

° ::; Xl ::; F l , if X2 = 1; 
R i - l < Xl ::; Fi , if X2 = i and 1 < i < K ; 

R K - I < Xl ::; C, ifX2 = K} . 

The evolution equations of X(t) are defined as follows: 

(XI , X2) -+ (min{C, xI + k} , X2) , 

with rate APk, V k E £ 
if (Xl + k) ::; Fj , and X2 = j , 

-+ (min{C, xI + k} ,K) , 

with rate APk, V k E £ 
if x2 = K or (Xl + k) > FK- I , 

-+ (min{C, xI + k},l) , 

with rate APk, V k E £ 
if 1= min{h l(x i + k ::; Fh) and x 2+1 ::; h ::; K-l} , 

-+ (max{O, xI - 1},x2) , 

with rate X2/-i , 

if (Xl =I R i + 1 or (Xl = R i + 1 and X2 =I i + 1)) 
-+ (max{O, xl - 1},max{O, x2 - I}) , 

with rate X2/-i , 

if Xl = R i + 1, and X2 = i + 1, 
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where i , j = 1, ... , K-l. 

Fig. 2. Example of the state transition graph for a three-servers s ystem. 

Obviously, this system has been already studied in the 
literature by Lui and Golubchik in [7]. In [7] , the authors 
use the concept of stochastic complementation to solve the 
system. They propose to partition the state space in disjoint 
sets in order to aggregate the Markov chain. We propose in 
this paper another approach which consists to define bounds 
rather than an exact resolution of the system. The relevance of 
using bounds is to offer a trade-off between the accuracy of 
the results and the computation time. Thus, in order to reduce 
the complexity of the Markov chain, we propose to apply the 
stochastic bounding approach to diminish the size of the batch 
probability distribution. The main advantage of this approach 
is the ability of computing bounds rather than approximations . 
Unlike approximation, the bounds allow us to check if QoS are 
satisfied or not. Next, we give some definitions and theorems 
about the stochastic ordering. 

IV. STOCHASTIC ORDERING THEORY 

We refer to Stoyan's book [8] for theoretical issues of the 
stochastic comparison method. We consider state space y = 

{I , 2, . . . ,n} endowed with a total order denoted as :::;. Let 
X and Y be two discrete random variables taking values on 
y , with cumulative probability distributions Fx and Fy , and 
probability mass functions p and q (P(i ) = Prob(X = i ), and 
q( i) = Prob(Y = i), for i = 1, 2, .. . , n). We give different 
manners to define the strong stochastic ordering :::; st for this 
case: 

Definition 1: We can define the :::;st ordering as follows : 

• generic definition: X :::;st Y -¢==} lEf(X) :::; lEf(Y) , 

for all non decreasing functions f : y -+ m+ 
whenever expectations exist. 

• cumulative probability distributions: 
X :::;st Y {o} Fx(a) ?: Fy(a) , Va E y . 

• probability mass functions 
n n 

X :::;st Y {o} Vi , 1 :::; i :::; n , 

k=i k=i 

(1) 
Notice that we use interchangeably X :::;st Y and 
p :::;st q. 

Example 1: We consider y = {I , 2, ... , 7} , and two dis-
crete random variables with d1 = [0.1, 0.2, 0.1, 0.2, 0.05, 

0.1, 0.25]' and d2 = [0, 0.25, 0.05, 0.1, 0.15, 0.15, 0.3]. We 
can easily verify that d1 :::;st d2: the probability mass of d2 is 
concentrated in higher states such as the probability cumulative 
distribution of d2 is always below the cumulative distribution 
of d1 (see Fig. 3). 

u 

u 

tu 

" I OJ 
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Fig. 3. dl d2: Their pmf (left) and their cumulative distribution functions 
(right). 

We can also 
{X(t) ,t ?: O} and 
defined on G. 

compare stochastic processes. Let 
{Y(t) , t ?: O} be stochastic processes 

Definition 2: We say that {X(t) , t ?: O} :::;st 

{Y(t) , t ?: O} , if X(t) :::;st Y(t) , Vt ?: 0 

When the processes are defined on different states spaces, we 
can compare them on a common state space using mapping 
functions. Let {X(t) , t ?: O} (resp. {Y(t ), t ?: O}) defined on 
A (resp. B), 9 (resp. h) be a many to one mapping from A 

to S, (resp. B -+ S) . Next, we compare the mapping of the 
process {X(t) , t ?: O} (resp. {Y(t) , t ?: O}) by the mapping 
function 9 (resp. h), which means g(X(t)) (resp. h(Y(t))), on 
the common state space S . 

The stochastic comparison of processes by mapping func-
tions is defined as follows [3]: 

Definition 3: We say that {g(X(t)) ,t ?: O} :::;st 

{h(Y(t)) , t ?: O} , if g(X(t)) :::;st h(Y(t)) , Vt ?: 0 

We can use the coupling method for the stochastic comparison 
of the processes. For the :::;st ordering, the coupling method can 
be used for the stochastic comparison of CTMCs. As presented 
in [3], it remains us to define two CTMCs: {X (t) , t ?: O} and 
{Y(t) , t ?: O} governed by the same infinitesimal generator 
matrix respectively as {X(t) , t ?: O}, and {Y(t) , t ?: O}, 
representing different realizations of these processes with 
different initial conditions. The following theorem establishes 
the :::;st-comparison using the coupling [3] : 

Theorem 1: 

{g(X(t)) , t ?: O} :::;st {h(Y(t)) , t ?: O} (2) 

if there exists the coupling {(X(t) , Y(t)) , t ?: O} such that: 

v. 

g(X(O)) :::; h(Y(O)) =? g(X(t )) :::; h(Y(t)) , Vt > 0 (3) 

HYSTERESIS SYSTEM WITH AGGREGATED BOUNDING 
ARRIVAL PROCESS 

The bounding model is a hysteresis system equivalent to 
the exact system, except that the arrival process is defined as 
follows: the arrivals of bulks follow a Poisson process with 
the same rate A, and batches follow a probability distribution 
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pU (resp. pI) for the upper bound (resp. the lower bound). 
The probability distributions of the batches for the bounds are 
obtained by aggregations, in order to reduce the size, with the 
following relation: 

and 

If p is defined on a state space of size n, then pU (resp. 
pI) are defined on a state space of size m, and m < n. 

Moreover, pU and pI are obtained to be the closest distributions 
with m states, according to an increasing reward function 
[2]. Intuitively, the probability distribution pU (resp. pI) has 
been obtained by removing some states of p and by adding 
their probabilities into higher states (resp. lower states). The 
optimality of bounds proved in [1] helps to obtain the most 
accurate bounds according to an increasing reward function . 
We present thereafter a brief description of the bounding 
reduction algorithm developed in [1] . 

A. Bounding batch distribution reduction 

For a given distribution p defined on E (lEI = n), and for 
an increasing reward function r (r: E -+ lR+ ), we compute 
bounding distributions pU and pI defined respectively on EU 

and EI (IEUI = m, IEII = m) (m < n), such that: 

1) pI P pU, 

2) L:iE£ r( i )p( i) - L:iE£! r( i )pl (i) is minimal amon.g 
the set of distributions on n states that are stochasti-
cally lower than p, 

3) L:iE£u r( i )pU (i ) - L:iE£ r( i)p( i) is minimal amon.g 
the set of distributions on n states that are stochasti-
cally upper than p. 

The distributions pU and pI are the closest bounding distribu-
tions defined on m states, according to the reward r. We note 
that the distributions pU and pI are derived from an algorithm 
based on dynamic programming [2], which guarantee the 
optimality of the bounds. The problem dealing with a discrete 
distribution is transformed into a graph theory problem. The set 
of vertices represents the states of the probability distributions, 
and the arcs have a weight which represent the error due to the 
suppression of states. So, the computation of the aggregated 
bounding distributions is equivalent to compute the path of 
length m with the minimum cost in the graph. Next, in order 
to be clearer, we give an example. 

Example 2: Let A = (A, p(A)) be a discrete distribution 
with support A = {O, 2, 3, 5, 7} and probability vector 
p(A) = [0.05, 0.3, 0.15, 0.2 , 0.3]. For reward function r 

defined as follows: 'II ai E A, r( ad = ai, we aim to reduce the 
state space of A to m = 3 states. The expected reward function 
of the initial distribution is R[A] = L:aiE A r(ai ) = 

4.15. The computation of the optimal upper bound (A) cor-
responds to explore all 3-hops paths from the upper state 7 
such that R[A] - R[A] is minimal (see Figure 4). This can be 
done by applying the in [11 The optimal 
upper bound obtained is A = (A, p(A)) with A = {2, 5, 7}, 
p(A) = [0.35, 0.35, 0.3] and R[A] = 4.55. 

We propose now to define from the aggregated bounding 
batch probability distributions two Markov chains. Let XU(t ) 

Fig. 4. The tree explored to define the optimal 3 single hops. 

(resp. X I(t)) be the hysteresis system built with the arrival 
bulk probability distribution pU (resp. pI). Next, we will prove 
that they represent really bounding systems for X (t) . 

B. Stochastic comparison of the systems 

We define the many to one mapping function 9 : A -+ S , 

such that g(x) = X l, where X l E Sand S = {O, ... , C}. We 
note that in the state space S, we use the total order We 
have the following theorem: 

Theorem 2: We have the following relations: 

• g(X(O)) g(XU(O)) =? g(X(t)) 

g(XU(t)) , t > O. 

• g(XI(O)) g(X(O)) =? g(XI(t)) 

g(X(t)) , t > O. 

Proof We use theorem 1 based on the coupling of the 
processes. We begin with the first relation of theorem 2, in 
order to establish that {XU(t) , t :::: O} is really an upper bound. 
For the proof, we suppose that at time t, g(XU(t)) = y, and 
g( X (t)) = x. The proof is by induction, so we suppose that the 
order is verified at time t (x y) , and we prove that at time 
t + dt the order is still verified. We denote by g(XU(t + dt)) = 

y', and g( X (t+dt)) = x' . We consider the two kinds of events: 
arrivals and services. 

• arrivals: if we have an arrival of size k in X(t) such 
that at time t + dt, x' = X + k, then we can have also 
a transition from y to y' such that y' = y + I, and 
k I, as P pU. SO x' y', and the order is still 
verified at time t + dt . 

• services: if we have a service for X U(t ) such that at 
time t + dt, y' = y - l, then we can have also a service 
in X(t) such that at time t + dt , we have x' = x- I, 

as the transition rates are the same in the two systems. 

• 
For the lower bound {XI(t) , t :::: O} , the proof is similar, 

as for the arrivals pI p, and the service rates are the 
same, then the second relation of theorem 2 is verified. Note 
that as the stochastic comparison of the processes is made 
by the mapping g, then it allows to compare the processes 
from the number of customers waiting in the system. So, 
this provides the comparison for performance measures as the 
expected number of customers waiting in the system, expected 
departure, blocking probabilities, etc .. 
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Let IIx be the steady state distribution of {X(t) , t 
O}, and II:x (resp. be the steady state distribution of 
{XU(t), t O} (resp. {Xl(t), t OJ), we have the following 
propositions. 

Proposition 1: Va E IN+ and V X2 E {I , ... , K} , we 
have: 

This proposltlOn is deduced from the stochastic compar-
ison of the processes stated in Theorem 2. As the ex-
pected buffer length is expressed as follows: lE[IIx] 
L XI (L X2 IIX(XI , X2)) XXI, we deduce from the Proposition 
1 the following result. 

Proposition 2 (Expected buffer length): V (Xl , X2) E E, 

we have: 

lE[IIx] :::;lE[IIxu]' and lE[IIxl] :::;lE[IIx ]. 

We note that from the comparison of the stationary probability 
distribution given in Proposition 1, and as '1'( Xl, X2) = Xl is 
an increasing function then Proposition 2 is verified. 

In the same way, we can deduce the re-
lation between the expected departure of the 
models. Let lE[Dx] be the expected departure of 
{X(t) , t O} such that: V(XI ' X2) E E, lE[Dx] 

f-iL xl <F, 7r (XI , I) + L{:;lif-iLRi_I<XI<Fi 7r (XI ,i) + 
And let JEIDxu] (resp. 

lE[Dx1]) be the expected departure of {XU(t) , t O} (resp. 
{Xl(t) , t OJ), we have from the Proposition 1 the following 
relations: 

Proposition 3 (Expected departure): 

lE[Dx] :::; lE[Dxu], and lE[Dx1] :::; lE[Dx]. 

We derive also the blocking probability in the system. This 
metric is computed as follow: Bp = LX2 IxI=C II(XI ' X2). 

Proposition 4 (Blocking probabilities): 

Bp :::; Bpu , and Bpl :::; Bp. 

This propOSition is also deduced from Proposition 1 and 
the fact that the reward function 'I' (defined as follows: 
"lXI, X2, r(C, X2 ) = C , and r(xI' X2) = 0 otherwise) is 
an increasing function. 

VI. NUMERICAL EXAMPLES 

We consider a threshold-based queueing system with hys-
teresis and batch-arrival, such that the distribution of the batch 
arrivals is randomly generated on a support {I , 2, 3, ... , 500} . 
Depending on the input parameters, we propose to illustrate 
in this section some numerical examples which show the 
relevance and the accuracy of the bounding models presented 
in the paper. 

We present below three examples through which we pro-
pose to vary some input parameters as buffer size, arrival rate, 
and degree of virtualization (number of servers). The studied 
models are: 

• Hysteresis model with exact batch-arrival distribution 
(X(t) 

• Hysteresis model with stochastic lower bound of 
batch-arrival distribution (Xl(t) 

• Hysteresis model with stochastic upper bound of 
batch-arrival distribution (XU (t) 

We note that to compute the steady state distribution proba-
bility vector of the considered models, we use the methodology 
proposed by Lui and Golubchik in [7] based on the stochastic 
complementation as it is proved to be less complex than the 
commonly used solution technique [10]. 

A. Some peiformance measures versus buffer size 

As a first example, we consider a threshold-based queue 
with hysteresis and batch-arrival, such that: the number of 
servers is K = 10, the service rate is set to 100 and 
the arrival rate is taken equal to 1. We propose to vary 
the buffer size from C=1000 to C=6000 and observe some 
perfonnance measures for the studied models. According to 
the buffer size, the forward and the reverse threshold vectors 
are taken as follows: for C=CI =1000, the threshold vectors 
are F = [90, 140, 280, 400, 610, 690, 730, 840, 910] and 
R = [30, 90 , 190, 270, 410, 510, 620, 700, 800], for C i = 
i x 1000, the threshold vectors are Fi = i X F and R i = i X R . 

We note that the reductions considered for the batch-arrival 
distribution, are respectively bins=10 and bins=50 (i.e. the 
bounding distributions are defined on a support of length 10 
and 50). 

Depending on the values of the buffer size, the figures 
5, 6 and 7 illustrate the expected buffer length, the expected 
departure and the blocking probabilities. We illustrate also in 
Figure 8 the computation times in seconds needed to solve the 
different models. 
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_ Hys . model with s t - L .B . bulk-arrival. bins= 50 

__ __ 

Buffer size 

Fig. 5. Expected buffer lengths versus buffer size. 

Through these figures, we remark that the aggregating 
models define a good coverage of the exact result and the 
accuracy of these bounds are very improved when we increase 
the number of bins (bins = 50). We remark also in Figure 
8 that the time needed to compute bounds on perfonnance 
measures is very short and our approach is largely faster than 
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Fig. 6. Expected departures versus buffer size. 
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Fig. 7. Blocking probabilities versus buffer size. 
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Fig. 8. Computation times (in seconds) versus buffer size. 

the exact computation. Indeed, we recall that we derive a 
stochastic bounds on only 10 or 50 states knowing that the 
original distribution is defined on 500 states, so considering 
such reductions, we are forced to admit that the proposed 
bounding models are very relevant and close to the exact 
results with very low computational times . 

B. Some performance measures versus arrival rate 

We suppose here that the buffer size is C = 1000, the 
number of servers, K, is equal to 10, the threshold vectors 
are F = (90 , 140, 280, 400, 610, 690, 730, 840, 910) and 
R = (30, 90, 190, 270, 410, 510, 620, 700, 800). We set the 
service rate f..l to 1 and we propose to vary the arrival rate A 

from A = 0.1 to A = 2.5. So, we vary the utilization rate of 
the system from the a lightly loaded system with A = 0.1 to 
a highly loaded system with A = 2.5. We note that the size of 
reduction considered for stochastic bounding distribution are 
also bins = 10 and bins = 50. 

We depict in figures 9, 10 and 11 the expected buffer 

length, the expected departure and the blocking probabilities 
computed for different studied models. We illustrate in Figure 
12 the computation times in seconds. 
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Fig. 9. Expected buffer lengths versus arrival rate. 
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Fig. 10. Expected departures versus arrival rate. 
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Fig. II. Blocking probabilities versus arrival rate. 
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Fig. 12. Computation time (in seconds) versus arrival rate. 

From these curves, we see that the bounding results frame 
the exact results and are very accurate. We observe that the 
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perfonnance measures obtained fonn reduction bins = 50 are 
the closest results and are very relevant. We note also that 
the accuracy of bounds is not degraded when the arrival rate 
increase. Regarding the computation time (Fig 12), we observe 
that the fact that the size of the bulk-arrival distribution is 
aggregated represents an important contribution for decreasing 
the computation time and also the complexity of the studied 
model. Moreover the precision of the results is very relevant. 

C. Some performance measures versus number of servers 

For the third example, we propose to vary the degree of 
virtualization of the servers in the threshold-based queue with 
hysteresis and observe the behavior of some perfonnance mea-
sures. So, we consider a threshold-based queue with hysteresis 
and batch-arrival such that: the service rate is set to 100, the 
arrival rate is taken equal to 1, and the buffer size is set to 
C = 2000. 

We are interested in computing some perfonnance mea-
sures by varying the number of servers from K = 5 to 
K = 200. For the different degree of virtualization considered, 
we use the following equation to define respectively the 
forward and the reverse threshold vectors: F (IF J, 2 x 
l J , .. . , (K - 1) x l J) and R = Fi - l2 K J, for 
i = 1, .. . ,K - 1. 

Thus, depending on the degree of virtualization, the figures 
13, 14, 15 and 16 illustrate the expected buffer length, the 
expected departure, the blocking probabilities and the compu-
tation time for the studied models. The reductions considered 
here are bins = 10 and bins = 50. 
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Fig. 13. Expected buffer lengths versus degree of virtualization. 
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Fig. 14. Expected departures versus degree of virtualization. 

From these figures, the observations and the conclusion 
made before are also ascertained in this example. So, we 
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Fig. 15. Blocking probabilities versus degree of virtuali zation. 
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Fig. 16. Computation time (in seconds) versus degree of virtualization. 

show clearly that the results provided after using the stochastic 
bounds on the batch-arrival distribution, are very accurate and 
gives a good coverage of the exact results with considerably 
reduced computation times. Thus, from these observations, we 
can say that the approach proposed in this paper offer a very 
interesting trade-off between accuracy of the results and the 
computational complexity. 

We emphasize however that the number of bins (the size 
of the reduction) in the bounding distributions is fixed in the 
algorithm. A good number of bins satisfying the required trade-
off between the accuracy of the bounds and the computation 
time can be detennined in an incremental manner: one begins 
with a reduced number of bins, if the accuracy of bounds 
is not satisfactory, the number of bins can be incremented. 
The iteration can be stopped, if the required accuracy is 
reached and/or the computation time of bounds exceeds a fixed 
threshold. 

VII. CONCLUSION 

We propose in this paper to model a data center in a cloud 
system by a hysteresis queueing system with bulk arrivals 
process and we derive bounds on perfonnance measures. The 
interest of hysteresis model is to represent the dynamic behav-
ior of a data center by activating/deactivating the servers (VMs) 
according to the queue occupancy. However, when the number 
of VMs and the size of the system increase, we remark that 
the resolution of this system becomes very cumbersome and 
difficult. So, to overcome this problem we propose to use the 
stochastic bounding technique to derive bounds which provide 
guarantees on perfonnance measures of the system. Hence, 
through the paper we show clearly that defining bounds on the 
bulk arrival distribution with smaller size allows to manage the 
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computational complexity and so provides very relevant results 
for network dimensioning. Finally, it is important to emphasize 
that the methodology proposed here offers a good tradeoff 
between the accuracy of the results and the computational time. 

As a future work, we expect to investigate systems with 
modulated traffic (bursty) as an input process of the queue and 
also systems with heterogeneous servers (VMs). We also plan 
to extend our analysis and define optimal thresholds vectors in 
order to optimize the performance of cloud systems. 
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