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4 LACL, Paris Est-Créteil University, France
nihal.pekergin@u-pec.fr

Abstract. We present an extension of a methodology based on mono-
tonicity of various networking elements and measurements performed on
real networks. Assuming the stationarity of flows, we obtain histograms
(distributions) for the arrivals. Unfortunately, these distributions have
a large number of values and the numerical analysis is extremely time-
consuming. Using the stochastic bounds and the monotonicity of the
networking elements, we show how we can obtain, in a very efficient
manner, guarantees on performance measures. Here, we present two ex-
tensions: the merge element which combine several flows into one, and
some Active Queue Management (AQM) mechanisms. This extension
allows to study networks with a feed-forward topology.

Keywords: Performance evaluation, histograms, stochastic bounds, queue
management

1 Introduction

Measurements are now quite common in networks. But they are relatively dif-
ficult to use for performance modeling in an efficient manner. Indeed, the mea-
surements for traffics are extremely huge and this precludes to use them directly
in a model. Of course it is still possible to use traces in a simulation, but this is
not really an abstract model and we want to be very fast when we solve models
and this is not possible with simulations.

One possible solution consists in fitting a complex stochastic process (such
as a PH process or a Cox process [8]) from the experimental data and use this
parametrized process in a queueing theory model. Here we advocate another so-
lution: the histogram based models. We propose to combine this type of models
with stochastic ordering theory to obtain performance guarantees in an efficient
manner. Such an approach provides a trade-off between the accuracy of the
results and the time complexity of the computations. In the last nine years,
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Hernández et al. [5–7] have proposed a new performance analysis to obtain
buffer occupancy histograms. This new stochastic process called HBSP (His-
togram Based Stochastic Process) works directly with small histograms using a
set of specific operators on discrete time. The time interval is denoted as a slot.
The input traffic is obtained by a heuristic from real traces and it is modeled
by a discrete distribution. The arrivals during one time slot are supposed to
be identically independently distributed (i.i.d.). The service is supposed to be
deterministic, corresponding to the traffic capacity of the link. The buffer is sup-
posed to be finite. Thus, the theoretical model is a Batch/D/1/K queue. In their
papers, Hernández et al. do not use the Markovian framework associated with
the queue and they develop a numerical algorithm based on the convolution of
the distributions. As they named their approach ”Histograms”, we use the same
terminology here. We sometimes write ”discrete distributions”, which is a more
proper term. In this paper, these terms and probability mass function (pmf) are
used interchangeably. The analysis proposed by Hernández et al. is only applied
to one node because they do not derive properties for the output process of the
node. Another problem is that the convergence of their numerical algorithm is
not proved. Finally, they use an heuristic to construct reduced histograms from
the traces. This is extremely important because their method is fast, but it does
not give any guarantees on the results. More precisely, they proceed as follows:
they assume the stationarity of the arrivals. Thus, they obtain from the trace, a
histogram for the distribution of the number of arrivals during one time slot. But
the size of the histogram is too large for a numerical algorithm based on con-
volution operations. Therefore, they simplify the histogram dividing the space
into n sub-intervals (n is a small number) to obtain only n bins (or states) in
the histograms. With this method they obtain approximate solutions which can
be computed efficiently, if n is small. But there is no guarantee on the quality
or the accuracy of the approximations.

To illustrate the approach, we present now a trace used by Hernández et al.
and in this work. Figure 1 shows a plot of MAWI traffic trace [11] corresponding
to a 1-hour trace of IP traffic of a 150 Mb/s transpacific line (samplepoint-F)
for the 9th of January 2007 between 12:00 and 13:00. This traffic trace has an
average rate of 109 Mb/s. Using a sampling period of T = 40 ms (25 samples
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Fig. 1. MAWI traffic trace Fig. 2. MAWI arrival load histogram
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Fig. 3. HBSP approximation of MAWI arrival load histogram with bins=100.

per second), the resulting traffic trace has 90,000 frames (periods) and an average
rate of 4.37Mb per frame, the corresponding histogram is given in Figure 2. The
number of bins in this histograms is 80511. Finally, the HBSP approximation
with 100 bins is given in Figure 3. The key idea here is the reduction of the
number of bins from 80511 bins in the trace to only 100 bins to have the fast
numerical analysis.

For our approach, we propose to apply the stochastic bounding method to
the histogram based models [3, 2]. The goal is to generate bounding histograms
with smaller sizes which can be used to analyze queueing elements with some
guarantees on the results. We use the strong stochastic ordering (denoted by ≤st)
[9]. We have proposed to use the algorithm developed in [4] to obtain optimal
lower and upper stochastic bounds of the input histogram. This algorithm allows
to control the size of the model and it computes the most accurate bound with
respect to a given reward function. The bounding histograms are then used in
the state evolution equations to derive bounds for performance measures for a
single queue.

An extension of our approach to a queueing network was also investigated.
A queueing network is a set of interconnected queues where the departures from
one (or more) queue enter one (or more) other queue, according to a specified
routing, or leave the system. Here, we focus on queueing networks with finite
capacity. We have decomposed the network nodes into: Traffic sources (input
flows), Finite capacity queues, Merge elements and Splitters. Monotonicity of
networking elements is the key property for our methodology (the formal defini-
tion will be given in the paper). In [2] we have proved that some splitters which
divide a flow into several sub-flows routing to distinct nodes are also monotone.
Therefore, we have generalized the method to networks with a tree topology.

In this paper, we further generalize our methodology in two directions. First,
we prove that the merge elements which combine several flows into a global
one is also monotone. This first result allows to consider feed-forward networks
(i.e. the graph of the networking elements and the links is a Directed Acyclic
Graph (DAG)). We use a decomposition approach based on the network topol-
ogy and the monotonicity allows to obtain approximate results faster than the
traditional approach. We remind that the decomposition approach allows us
to decompose the network and to study the networking elements in a sequen-
tial and greedy manner following the topological ordering associated with the
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DAG. This approach gives approximations on performance measures. The use
of our methodology in this case aims to accelerate the computational times of
this approach with a similar accuracy. Secondly, we study some Active Queue
Management mechanisms to extend the modeling applicability of our method.

The technical part of the paper is organized as follows: in Section 2, we de-
scribe our methodology: the stochastic comparison of histograms, the reduction
of the histogram sizes, the basic queueing model, and the monotonicity. In Sec-
tion 3, we introduce the routing elements: splitter and merge and we prove that
they are monotone. Section 4 is devoted to the AQM mechanisms. Finally in
Section 5, we give numerical results for a single node analysis (to compare with
HBSP algorithm), and a feed forward network.

2 Methodology for bounds and performances

We briefly introduce a well known ordering, called ”strong stochastic ordering”,
for comparing distributions on R. We show how one can compute the optimal
lower bound and upper bound of a given size. The optimality criterion is the
expectation of an arbitrary positive and increasing reward chosen by the modeler.
We first define the stochastic comparison.

2.1 Stochastic bounds

We refer to Stoyan’s book [9] for theoretical issues of the stochastic comparison
method. We consider state space G = {1, 2, . . . , n} endowed with a total order
denoted as ≤. Let X and Y be two discrete random variables taking values on
G, with probability mass functions (pmf in the following) d2 and d1.

Definition 1. We can define the strong stochastic ordering by non decreasing
functions or by some inequalities involving pmf.

– generic definition: X ≤st Y ⇐⇒ Ef(X) ≤ Ef(Y ),
for all non decreasing functions f : G → R+ whenever expectations exist.

– probability mass functions

X ≤st Y ⇔ ∀i, 1 ≤ i ≤ n,
n∑

k=i

d2(k) ≤
n∑

k=i

d1(k) (1)

Note that we use interchangeably X ≤st Y and d2 ≤st d1.

In order to reduce the computation complexity for computing the steady-
state distribution, we propose to decrease the number of bins in the histogram.
We apply a bounding approach rather than an approximation. Unlike approxi-
mation, the bounds allow us to check if QoS requirements are satisfied or not.

More formally, for a given distribution d, defined as a histogram with N
bins, we build two bounding distributions d1 and d2 defined on n < N bins such
that d2 ≤st d ≤st d1. Moreover, d1 and d2 are constructed to be the closest
distributions with n bins with respect to a given reward function chosen by the
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modeler. Note that this optimality is not necessary in our approach, but it helps
to obtain tight bounds. In [4], three algorithms to construct reduced size bound-
ing distributions have been presented: an optimal algorithm based on dynamic
programming with complexity O(N2 n), a greedy algorithm [4] with complexity
O(NlogN) and a linear complexity algorithm. There is no optimality for the last
two ones but they are faster. The modeler can use any of them and this gives him
the ability to choose between the accuracy and the computation times. In the
numerical experiments, we give only results for the optimal one. We emphasize
that the important property we need is the construction of a stochastic bound
of the experimental distribution extracted from the trace.

In order to get an idea of our stochastic bounding approach, we propose
to give an example. We consider the histogram associated to the MAWI traf-
fic trace (see Figure 2) which is defined on 80511 states and we propose to
derive bounding distributions d1 (stochastic upper bound distribution) and d2
(stochastic lower bound distribution) which are defined on reduced size of state
space i.e. on n = 10 states. For reward function equal to the identity, we com-
puted bounding distributions using the optimal algorithm present in [4]. The
cumulative distributions of the different computed histograms are presented in
the following figure.
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Fig. 4. Cumulative probability distribution (cdf) of computed histograms under MAWI
traffic trace.

From this figure, we can clearly observe that our approach allows to define
bounds and a coverage of the exact distribution. Moreover, these bounds defined
on a reduced state space (i.e. 10 hops instead of 80511 hops) allow to reduce the
complexity of numerical computations.

An important practical point is the unit we consider in the model. The traces
are measured in bits. To keep the model size reasonable, we convert the values in
data units. A data unit is D bits. Typically for the numerical analysis we present
here, D = 1000 bits. All the bins in the histograms representing the amount of
data are integer multiple of D.
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2.2 Stochastic Monotonicity of Networking Elements

The basic networking element is a finite queue associated with one server, a
scheduling discipline and an access control. Let B be the buffer size. We assume
that the queueing discipline is FCFS and work-conserving. The system evolves in
discrete time. The service capacity (the number of data units that can be served
during a slot) is constant denoted by C. During each slot, the events occur in
this order: arrivals and then service. The buffer-length evolution in the queue is
given by a time-homogenous Discrete Time Markov Chain (DTMC) {Xn, n ≥ 0}
taking values in a totally ordered state space, F = {0, 1, 2, . . . , B}. The number
of data units received during a time slot is independently identically distributed
(i.i.d.) random variable A specified by distribution H1. Therefore, the evolution
equation of the networking element with finite queue operating with Tail Drop
policy [8] is:

Xn+1 = min(B, (Xn +An − C)+), (2)

where operator (X)+ = max(X, 0).

The output of the analysis will be the buffer occupancy denoted by H3 and
defined on state space {0 · · ·B} and the departure process given by histogram
flow H5 defined on state space {0 · · ·C}. For a histogram H, we denote by EH

the set of states. For simplicity H will be considered as a probability vector
corresponding to the probabilities for the ordered elements of the set of states
EH .

We now give the main results of [2] about the stochastic monotonicity of
the elements. All the proofs are omitted here. At each queuing element, the
analysis consists in computing the distributions of H3 and H5 or bounds of
these distributions knowing the input arrival distribution H1. For a splitter and a
merge node, the analysis consists in computing the output distributions knowing
the input distributions, the parameters and the service discipline.

Proposition 1 (Buffer Occupancy distribution, H3 ). The queue-length
distribution before the instant of arrivals corresponds to steady state distribution
π of the Markov chain.

Let distribution Hq denote the convolution of distributions H1 and H3:

Hq = H3 ⊗H1.

Proposition 2 (Batch Departure, H5). The departure histogram H5 is com-
puted as follows: {

H5(w) = Hq(w), if w < C;
H5(C) =

∑
w≥C Hq(w), otherwise.

Proposition 3 (Losses, HL). The distribution of losses under the Tail Drop
policy is: {

HL(k − B) = Hq(k), if k > B + C;
HL(0) =

∑
k≤B+CHq(k), otherwise.
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Then, the loss probability PL can be defined as follow: PL = E[HL]
E[H1]

.

We have proved the monotonicity properties of a queue in [2] and we give them
without proof.

Definition 2. A finite capacity queue is H-monotone if the following property
holds: If Ha

1 ≤st H
b
1, then Ha

3 ≤st H
b
3 ; Ha

5 ≤st H
b
5 and Ha

L ≤st H
b
L.

Theorem 1. A finite capacity queue which is operating with work-conserving
FCFS service policy and Tail Drop policy is H-monotone.

3 Analysis of a network with a DAG topology

In this section, we study network operations involving multiple streams as in [10].
First, we consider the split operation which has already been partially presented
in [2]. Then, we introduce the merge operations. We note that the splitters (resp.
merge elements) do not have either processing element or queue to store data
units. The routing decision in these elements is supposed to be instantaneous.

3.1 Splitter

When the input flow modeled by a distribution HS crosses a splitter, it is divided
into m flows: HS,1, . . . ,HS,m. We assume that the batches observed after the
splitter are still i.i.d. for each flow. This precludes the representation of Round
Robin mechanism which may introduce the non stationarity in the flows.
We define for the split operator the H-monotonicity as follows:

Definition 3. A splitter is said to be H-monotone, iff

Ha
S ≤st H

b
S ⇒ ∀i, Ha

S,i ≤st H
b
S,i.

We study two cases of splitter:

– each batch arriving at the splitter is sent completely to one of the output
flows. The output is randomly chosen according to a routing probability.
This was previously presented in [2].

– the batch is divided into all the outputs according to a distribution for the
repartition of the data units. This part is studied in this current paper.

Model of a routing probability. We study a split where all the data units
of a batch arriving in the input flow are routed to an output flow with a routing
probability. Let pi, 1 ≤ i ≤ m (such that

∑m
i=1 pi = 1), be the routing probability

of the batch to the output flow i of the split. If the set of states of HS does not
include 0, it will be added with probability 0, and the set of states for output
flows will be the same as EHS .

EHS,i = {0} ∪ EHS , 1 ≤ i ≤ m.

The probability distribution of any output flow i can be computed as follows:
1 ≤ ∀i ≤ m, HS,i(k) = pi HS(k), k > 0; and HS,i(0) = 1−

∑
k 6=0HS,i(k).
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Example 1. We consider the distribution H given by the set of states, EH =
{0, 3, 4, 7, 10} and the corresponding probability vectorH = [0.1, 0.2, 0.4, 0.1, 0.2].
Assume that the batch is routed on two directions with equal probability. Each of
the routed batch has the following distribution: the values are EHi = {0, 3, 4, 7, 10}
and the probabilities are Hi = [0.55, 0.1, 0.2, 0.05, 0.1], where 1 ≤ i ≤ 2.

For an efficient implementation of histograms, the set of states are constituted
of the elements with non null probabilities. However, in the sequel for the proofs,
we assume that the histograms are defined on set of states EH = {0, · · ·n} thus,
the probability vectors may contain null probabilities.

Theorem 2. If the batch is routed entirely to a flow according to routing prob-
abilities, then the split is H-monotone.

Proof: For each flow i, 1 ≤ i ≤ m, we have the following equations:

1 ≤ ∀l ≤ n,
n∑

k=l

Ha
S,i(k) =

n∑
k=l

pi H
a
S(k),

n∑
k=l

Hb
S,i(k) =

n∑
k=l

pi H
b
S(k).

As Ha
S ≤st Hb

S , we have
∑n

k=lH
a
S(k) ≤

∑n
k=lH

b
S(k). Thus, for each flow

i, 1 ≤ i ≤ m:
∑n

k=l piH
a
S(k) ≤

∑n
k=l pi H

b
S(k). Which can be also written:∑n

k=lH
a
S,i(k) ≤

∑n
k=lH

b
S,i(k). Which is equivalent to Ha

S,i ≤st H
b
S,i.

Model of a division of the batch and dispacthing among the links.
We now assume that the data units are distributed among the m flows. The
proportion of data received by each flow is given by the probability pi which
must be understood now as a ratio. Due to this multiplication by pi, this amount
of data can be a non integer amount of data units. Then, we assume that the
data units are added with null bits and we obtain an integer number of data
units.

EHS,i = {k | 1dpi∗qe=k}q∈EHS .

The probability distribution of any output flow i can be computed as follows:
1 ≤ ∀i ≤ m, HS,i(k) =

∑
q∈EHS ,q 6=0HS(q)1dpi∗qe=k, ∀k > 0, and

HS,i(0) = 1−
∑

k 6=0HS,i(k).

Example 2. Consider the same example, but assume now that the data units
are distributed among the flows. We also assume an equal repartition of the
flows. The resulting batches have the same distribution: the values are EHi =
{0, 2, 4, 5} and the probabilities are Hi = [0.1, 0.6, 0.1, 0.2]. Indeed, the proba-
bility that the batch size is 2 is the sum of the probability that the initial batch
size (before division into two equal batches) was 3 or 4.

Theorem 3. If the batch is splitted into batches according to dispatching prob-
abilities, then the split is H-monotone.
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Proof: For each flow i, 1 ≤ i ≤ m, we have the following equations:

1 ≤ ∀ l ≤ n,
n∑

k=l

Ha
S,i(k) =

n∑
k=l

n∑
q=0

Ha
S(q)1dpi∗qe=k.

After exchanging the summations:
∑n

k=lH
a
S,i(k) =

∑n
q=0H

a
S(q)

∑n
k=l 1dpi∗qe=k

But
∑n

k=l 1dpi∗qe=k = 1q≥Qi
, for someQi. Thus,

∑n
k=lH

a
S,i(k) =

∑n
q=0H

a
S(q) 1q≥Qi

=∑
q≥Qi

Ha
S(q). Since Ha

S ≤st H
b
S , due to the st-ordering we get:

∑
q≥Qi

Ha
S(q) ≤∑

q≥Qi
Hb

S(q). Therefore,
∑n

k=lH
a
S,i(k) ≤

∑n
k=lH

b
S,i(k). Thus for all i, Ha

S,i ≤st

Hb
S,i.

3.2 Merge

In a merge element, a set of independent flows with distributionsHM,i, 1 ≤ i ≤ m
are aggregated to a flow with distribution HM . We suppose that the links have
a finite capacity, where Ci is the capacity of link i. In this subsection, we present
the monotonicity properties for the merge elements by means of random variables
corresponding to these histograms. Thus, Xi is the random variable with pmf
HM,i representing the number of data units of input flow i of the merge element.
The merge can be defined as a function as follows:

Definition 4. A merge is a function m : ×m
i=1{0, . . . , Ci} → {0, . . . , C} (i.e. the

full convolution of m distributions). m(X1, . . . , Xm) represents the state of the
output flow of the merge element under independent input flows Xi. In fact it is
a random variable with pmf HM representing the number of data units leaving
the merge element and taking values in {0, 1, · · · , C} where C ≤

∑m
i=1 Ci.

Obviously, for the merge operation, the number of departed data units must
be lower than the number of arrived data units.

Definition 5. The merge is causal if m(X1, . . . , Xm) ≤
∑m

i=1Xi.

We can also define for a merge element the traffic monotonicity as follows:

Definition 6. A merge element is traffic monotone iff for all couple (X1, . . . , Xm)
and (Y1, . . . , Ym), if Xk ≤ Yk, ∀k, then m(X1, . . . , Xm) ≤ m(Y1, . . . , Ym).

In the sequel, we consider causal merge elements. The merge operation may have
the Tail Drop property which is defined as follows:

Definition 7. A merge element is said to be Tail Drop iff m(X1, . . . , Xm) =
min(C,

∑m
i=1Xi).

We study now the monotonicity property of the merge elements.

Definition 8. A merge element is said to be H-monotone, iff

∀i, Ha
M,i ≤st H

b
M,i ⇒ Ha

M ≤st H
b
M .

Theorem 4. If the merge element is traffic monotone then it is H-monotone.
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Proof: We suppose that ∀i, Ha
M,i ≤st H

b
M,i, thus the corresponding random

variables are comparable: ∀i, Xa
i ≤st X

b
i . The traffic monotonicity of the merge

element means indeed that the function m is an increasing function. Since the
output flows Ha

M and Hb
M are defined as increasing functions of comparable

independent random variables, they are also comparable (see page 7 of [9]).

Corollary 1. A merge element operating with Tail Drop (i.e. m(X1, . . . , Xm) =
min(C,

∑m
i=1Xi)) is causal and traffic monotone. Therefore, it is H-monotone.

We now consider loss processes in merge elements. A merge element may
delete some data units due to a bandwidth limitation or an access control. First
we define the number of data units lost by loss function l which depends on the
merge function m.

Definition 9. The number of data units lost in a merge element can be de-
fined by a function l : ×m

i=1{0, . . . , Ci} → {0, . . . ,
∑m

i=1 Ci}. l(X1, . . . , Xm) =∑m
i=1Xi −m(X1, . . . , Xm) .

Indeed, the number of losses is the difference between the number of data
units arrived on the m links (i.e.

∑m
i=1Xi) and the number of units accepted

by the merge element (i.e. m(X1, . . . , Xm)). The loss distribution can be given
as follows, since the arrivals are independent. Let us remark that small letters
denote the realizations of the corresponding random variables Xi.

Proposition 4 (Loss Distribution for a merge, HL).

HL(k) =
∑

(x1,...,xm)

1∑m
j=1 xj−m(x1,...,xm)=k

m∏
i=1

HM,i(xi)

Property 1 If C =
∑

i Ci and the merge element is Tail Drop then there are
no losses.

Proof: The element is Tail Drop then, m(X1, . . . , Xm) = min(C,
∑m

i=1Xi). But
by construction xi ≤ Ci. Therefore

∑m
i=1Xi ≤

∑m
i=1 Ci = C. Thus, there are

no losses at the merge element.

Theorem 5. If the loss function l is increasing, then the distribution of losses
in a merge element is monotone: if ∀i, Ha

M,i ≤st H
b
M,i, then Ha

L ≤st H
b
L.

Proof : The proof is similar to that of Theorem 4. Since Ha
L and Hb

L are defined
as increasing functions of comparable input flows, they are comparable.

Property 2 We consider a Tail Drop, merge element with output capacity C.
If C <

∑
i Ci, the distribution of losses is monotone.

Proof : The number of data units lost is l(X1, · · ·Xm) = max(0,
∑m

i=1 Xi − C).
The monotonicity of the number of data units lost follows from the fact that
function l is increasing.
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4 Analysis of some AQM mechanisms

The queue presented in section 2 is operated under Tail Drop policy, which is a
particular case of AQM (Active Queue Management). Indeed, the data units are
accepted in the queue until the queue is full. In this section, we also present some
conditions for AQM to be H-monotone in order to derive performance measure
bounds. We illustrate this approach with a Random Early Detection mechanism
(RED in that follows).

We restrict ourselves to some AQMs where the probabilities of rejection de-
pend on the size of the queue just before the insertion.

Definition 10. The AQM is immediate if it operates independently and sequen-
tially for each data unit in the batch and if the probabilities of rejection take into
account the state of the queue just before the insertion.

Note that this is a restricted version of AQM. We do not represent some mech-
anisms like explicit congestion notification. And, in mechanisms like RED, one
does not use the instantaneous queue size to compute the acceptation proba-
bility, but a moving average of the queue size. Thus, our definition is rather
abstracted, but it can be used as a limit or an approximation.

More formally, we define an AQM acceptation by a function q(X) which
equals to 1, if the data unit is accepted and 0 if the data unit is rejected when
the buffer size is X.

Definition 11. The AQM is decreasing if function q(X) is not increasing.

Example 3. The Tail Drop policy used so far is described by the acceptation
function: q(X) = 1{X<B}.

Thus, Tail Drop at the packet level is clearly immediate and decreasing.

Definition 12 (IRED). The Immediate Random Early Detection policy is an
example of AQM. We assume that it operates at data unit level. Contrary to
Tail Drop, the acceptation for RED is given with probabilities. Many RED im-
plementations are based on cubic functions or on the following piece-wise linear
function to compute the acceptation probabilities:

– if X ≤ B+C
2 : Prob(q(X) = 1) = 1;

– if B+C
2 ≤ X < B + C: Prob(q(X) = 1) = 2(B+C)−2X

B+C ;
– if X ≥ (B + C): Prob(q(X) = 1) = 0;

Thus, the probability that q(X) = 1 decreases with the queue length, X.
We extend to network elements with an AQM the definition forH-monotonicity

and we prove some conditions on AQM to be H-monotone.

Definition 13. The AQM is H-monotone, iff

Ha
1 ≤st H

b
1 ⇒ Ha

3 ≤st H
b
3 and Ha

L ≤st H
b
L
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We suppose that the queue works with an immediate AQM specified with a
decreasing admission function q(X). We denote by Xn the length of the queue
at slot n and by Yn,j the length of the queue at slot n after the admission of
the jth data unit. We take the same assumptions for the parameters as in the
analysis of a queue (Section 2.2), and the maximum arrival batch is denoted by
K. The evolution equation of the queue length can be given as follows in the
case when arrivals are taken into account before the services.

Yn+1,0 = Xn;
Yn+1,j+1 = Yn+1,j + 1{An>j and q(Yn+1,j)=1};

Xn+1 = (Yn+1,K − C)+.

Theorem 6. If the AQM is immediate and the acceptation function is decreas-
ing, then the AQM is H-monotone.

Proof: The proof is based on the sample-path property of the strong stochastic
ordering [9]. We prove by induction that the existence of the realizations of the
random variables for the evolution of queue length (see Equation 2) satisfy:

xan ≤ xbn, ∀n.

We assume that queue lengths are the same for slot 0 and we give the general
case for the induction with n. Let suppose that xan ≤ xbn then by definition
yan+1,0 ≤ ybn+1,0. We will prove that if yan+1,j ≤ ybn+1,j then yan+1,j+1 ≤ ybn+1,j+1.
There are two cases:

1. if yan+1,j < ybn+1,j , since the increasing is one by one we are sure that:

yan+1,j+1 ≤ ybn+1,j+1.

2. if yan+1,j = ybn+1,j , then q(yan+1,j) = q(ybn+1,j), and it follows from the hy-

pothesis that Ha
1 ≤st H

b
1 then 1Aa

n>j ≤ 1Ab
n>j . Thus, yan+1,j+1 ≤ ybn+1,j+1.

So, we deduce that: xan+1 = yan+1,K ≤ ybn+1,K = xbn+1. Therefore, we have the

stochastic comparison of the queue length evolutions: Xa
n ≤st X

b
n, ∀n and for

the stationary process: Ha
3 ≤st H

b
3 .

The number of data units lost during slot n+ 1 can be given as:
K∑
j=1

1{An>j and q(Yn+1,j)=0}.

It follows from the above proof that Y a
n,j ≤st Y

b
n,j . Since the acceptation

functions q() are decreasing functions, and Ha
1 ≤st H

b
1 , if the above indicator

function is 1 under Ha
1 then it is also 1 under Hb

1 . Thus, the number of data
units lost in each slot and in the limit will be comparable: Ha

L ≤st H
b
L.

5 Examples

We consider respectively a node with an IRED mechanism and a network of
nodes. For all the experiments, we suppose that the monotonicity property is
used for the convergence proof of our method [2] for ε = 10−6. the reward func-
tion used here is defined by r(i) = i, ∀ i ∈ EH . We note that the implementation
is performed on Matlab and the experiences were computed on a laptop com-
puter Intel Core I7, 2.53GHz.
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5.1 A RED node

We give a simple example to illustrate the impact of our method on single node
with IRED mechanism. We consider input histogramH1 = [0.10, 0.05, 0.10, 0.10,
0.15, 0.15, 0.10, 0.10, 0.05, 0.10] defined on state space EH1 = {1, . . . , 10} and
deterministic service C = 2. The performance measures (blocking probabilities,
average queue length and execution time) are calculated by varying the buffer
size from 4 to 30 data units. In Figures 5, 6 and 7, we present the performance
measures by using the exact computation and optimal lower bound for bins equal
to 3 and 5. In this example we illustrate the lower bounds but the upper bounds
can also be calculated.
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Fig. 5. Results on blocking probabili-
ties.
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Fig. 6. Results on mean buffer length.
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Fig. 7. Execution time (s).

Through these figures, we see that the use of bounding method allows us to
obtain accurate results with in reduced execution time. We remark that when
the number of bins increases the accuracy of the lower bound is improved.

5.2 A Feed-Forward Network

Unlike HBSP method, our approach can be extended to the study of feed-forward
networks as shown in the following example.

We consider a feed-forward network model depicted in Figure 8 with 6 nodes.
We take MAWI traffic trace as input arrival histogram (H1). Each node is a split
(resp. merge) element or a finite capacity queue (Bi = 10 Mb, i = 1, 3, 4, 6).
The service for each queue is taken respectively equal to 110Mb/s, 67.5Mb/s,
90Mb/s and 117.5Mb/s.
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Fig. 8. An example of Feed Forward Network.

Based on the decomposition approach, we compute the performance mea-
sures of interest under MAWI real traffic traces (Figure 1) by considering re-
spectively: the whole input distribution (MAWI histogram without reduction)
and our stochastic bounding histograms. For this example, we are interested in
the queue length distribution (H3), departure batch distribution (H5) and loss
probabilities (PL).

E[H1] E[H3] E[H5] PL

O. input 4375620 4332130 4352390 0.00530

Queue 1 L. b 4356310 3850300 4339640 0.00382

U. b 4397080 4890670 4364590 0.00739

O. input 1305720 875834 1305030 0.00052

Queue 2 L. b 1300650 863705 1300010 0.00049

U. b 1309460 884739 1308730 0.00055

O. input 3046670 2256310 3037710 0.00293

Queue 3 L. b 3034840 2190650 3026910 0.00260

U. b 3055400 2304630 3045640 0.00318

O. input 4342730 2519100 4327660 0.00346

Queue 4 L. b 4313200 2340670 4301450 0.00272

U. b 4357650 2593470 4341260 0.00375

Table 1. Results for bins=100.

E[H1] E[H3] E[H5] PL

O. input 4375620 4332130 4352390 0.00530

Queue 1 L. b 4366450 4099970 4346550 0.00455

U. b 4386860 4622920 4359020 0.00633

O. input 1305720 875834 1305030 0.00052

Queue 2 L. b 1302780 868692 1302120 0.00050

U. b 1307780 880729 1307060 0.00054

O. input 3046670 2256310 3037710 0.00293

Queue 3 L. b 3039820 2217560 3031480 0.00273

U. b 3051480 2282840 3042080 0.00306

O. input 4342730 2519100 4327660 0.00346

Queue 4 L. b 4322810 2398430 4310020 0.00295

U. b 4350010 2555410 4334300 0.00360

Table 2. Results for bins=200.

In Table 1 (resp. Table 2), we give for the four queues of the network, the
results obtained when we consider the original input histogram (denoted by O.
input) and those computed using our stochastic bounds (denoted by L.b for lower
bound and U.b for upper bound) for the number of bins equal to 100 (resp. 200).

From these tables, we remark that the bounds on the results are provided for
each intermediate stage (due to the H-monotonicity of the network elements).
We can also see that the results provided by our bounds are very accurate, and
become very close to the solution obtained with original input histogram, when
the number of bins increases. For bins equal to 100 (resp. 200), the execution
times of the bounds takes respectively 14.4 s (resp. 22.1 s) for the lower bound
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and 15.9 s (resp. 25.9 s) for the upper bound, where the resolution of the network
using the original input is obtained after longer than three days 314248 s. We
can therefore conclude that if we want to use the decomposition approach for
DAG network analysis and obtain approximations on performance measures, we
can use the proposed method and compute similar results with a relatively small
computation complexity.

6 Conclusions

The results developed in this paper are very promising: they allow to mix in an
efficient and accurate manner measurements and stochastic modeling to analyse
some networks (simple queue, AQM and DAG networks via decomposition ap-
proach). As future works, we want to extend our methodology and state some
stochastic comparison results in feed-forward networks [1] (and also general
topology networks). Note that the approach is not limited to performance evalu-
ation of networks, it can be applied to any problem (reliability, statistical model
checking) where we have large measurements and where the model is monotone
in some sense.
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