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Abstract. We generalise to non stationary traffics an approach we have
previously proposed to derive performance bounds of a queue under
histogram-based input traffics. We use strong stochastic ordering to de-
rive stochastic bounds on the queue length and the output traffic. These
bounds provide probability inequalities on transient behaviours and on
the steady-state when it exists. We provide some numerical techniques for
SBBP traffic. Unlike approximate methods, these bounds can be used to
check if the Quality of Service constraints are satisfied. Our approach pro-
vides a tradeoff between the accuracy of results and the computational
complexity and it is much faster than the histogram-based simulation
proposed in the literature.

1 Introduction

Measurements and traces are now much more frequent and we advocate that
we can use them to make the performance analysis of networking elements more
precise and more realistic. Typically, the traces are used as an input for a fit-
ting algorithm which finds the best approximation inside a class of well-known
stochastic processes (see, for instance, [12]). When this process can be associated
to a Markov process or chain, the whole system can be modelled by a so-called
structured Markov chain (see [13] for an example) and many algorithms have
been derived to solve the steady-state distribution for this type of models.

In [2, 3], we have proposed a different approach for stationary arrivals: we
model the system in discrete time and we use directly the measurements to
obtain a discrete distribution of arrivals during a time slot. Thus, we avoid the
fitting procedure and the approximations it may add in the model. Such an
approximation due to the fitting of the processes may lead to incorrect results
(see [6] for such a problem for service time distributions).

Such an idea has already been proposed and is known as the histogram based
models for more than 20 years (see for instance, the work by Skelly et al. [16] in
the area of network calculus to model the video sources and to predict buffer oc-
cupancy distributions). Recently, Hernàndez et al. [9–11] have introduced an ap-
proach called HBSP (Histogram Based Stochastic Process) to obtain histograms
of buffer occupancy. Their use histograms as inputs and some specific operators



in discrete time to represent a finite capacity buffer with a constant service under
the First Come First Served (FCFS) discipline. The model is solved numerically
and as usual, the curse of dimensionality appears. When the number of bins in
the histograms is too large, the computation times become extremely high and
the authors present an approximation of the histograms of traffic which leads
to a smaller complexity and a faster resolution. Unfortunately their accuracy of
the approximation cannot be checked.

We propose a more accurate method to deal with histograms having a large
number of bins. First in [4] we prove that the system is stochastically mono-
tone. This allows to obtain bounds on the queue size and the output process
when we consider bounds on the input process. Second, in [2] we provide sev-
eral algorithms to derive stochastic bounds of the arrival process with a smaller
complexity. As we build lower and upper bounds, our approach provides an es-
timation of the approximations. The complexity in the numerical computations
in basically dependent of the number of bins in the histogram or the number of
atoms in the discrete distribution. The main assumption of the approach is the
stationarity of the input process.

Here, we do not assume that the traffic is stationary. Typical Internet services
such as web surfing and high speed streaming services (Video On Demand (VOD)
and video conferencing), tend to generate sporadic traffic, and hence it would be
realistic to consider bursty packet arrivals for today’s telecommunication traffic.
There are some interesting queueing models and analytical results considering
bursty sources and discrete time queueing systems.

In [20], they consider finite capacity queue in discrete time with constant
service time of arbitrary length, and bursty on/off source with geometric dis-
tributed lengths of the phase. Closed form are derived for the loss ratio of cells.
In [21] an infinite capacity discrete-time queue with Bernoulli bursty source and
batch arrivals is analysed using the generating function technique. A closed form
expressions of some performance measures as average buffer length, and average
delays are obtained. Markov modulated arrivals have been quite often consid-
ered in the literature to represent traffic arrivals [15, 5]. In [15], they define an
MMPP (Markov Modulated Poisson Process) traffic model that accurately ap-
proximates the characteristics of Internet traffic traces. Results prove that the
queuing behaviour of the traffic generated by the MMPP model is coherent with
the one produced by real traces. Some important results on MMPP traffic and
queues with MMPP input are described in [5].

In this paper, we propose to apply stochastic bounds on the input traffic
to derive stochastic bounds on the queue length and the departure flow. We
propose a numerical technique to compute the bounds in an efficient way. We
show how our approach which have been developed for stationary arrivals can
be generalised to Switched Bernoulli Batch Process (SBBP in the following).

The technical part of the paper is as follows; We introduce briefly bounds for
the ≤st ordering in the next section for the sake of completeness. We advocate
that monotonicity of the evolution equation as well as stochastic bounds may
help to solve such a queueing model when the arrival process is not stationary.



We first considered the stationarity assumption to derive some results, theorems
and algorithms in section 3 which will be then generalised for non stationary
arrival processes in Section 4.

2 A brief presentation of stochastic comparison

We refer to [14] for theoretical issues of the stochastic comparison method. We
consider state space G = {1, 2, . . . , n} endowed with a total order denoted as
≤. Let X and Y be two discrete random variables taking values on G, with
cumulative probability distributions FX and FY , and probability mass functions
(pmf) d2 and d1. The ith index of pmf vectors denotes the probability that
the underlying random value takes value i: d2(i) = Prob(X = i), and d1(i) =
Prob(Y = i), for i = 1, 2, . . . , n. The stochastic comparison of two random
variables in the sense of the strong stochastic order, ≤st can be defined as follows.

Definition 1. The following definitions are equivalent.

– generic definition:

X ≤st Y ⇐⇒ Ef(X) ≤ Ef(Y ),

for all increasing (non decreasing) functions f : G → R+ whenever expecta-
tions exist.

– cumulative probability distributions:

X ≤st Y ⇔ FX(a) ≥ FY (a), ∀a ∈ G.

– probability mass functions:

X ≤st Y ⇔ ∀i, 1 ≤ i ≤ n,
n∑
k=i

d2(k) ≤
n∑
k=i

d1(k) (1)

Notice that we use interchangeably X ≤st Y and d2 ≤st d1.

Property 1. If X ≤st Y , then for any increasing function f ,

f(X) ≤st f(Y )

Example 1. We consider two discrete random variables with d2 = [0.1, 0.2, 0.1,
0.2, 0.05, 0.1, 0.25], and d1 = [0.3, 0.05, 0.1, 0.15, 0.1, 0.3] defined respectively
on support {1, . . . , 7} and {2, . . . , 7}. The set G is the union of support of the
two distributions d1 and d2 with null probabilities if an element does not belong
to one of them. We can easily verify that d2 ≤st d1: the probability mass of d1
is concentrated to higher states, and the probability cumulative distribution of
d1 is always below the cumulative distribution of d2 (see Figure 1).



Fig. 1. d2 ≤st d1: Probability mass functions (left) and cumulative distribution func-
tions (right).

The ≤st ordering is closed under mixture (Theorem 1.2.15 in page 6 of [14]):

Theorem 1. If X,Y and Θ are random variables such that [X | Θ = θ] ≤st
[Y | Θ = θ] for all θ in the support of Θ, then X ≤st Y .

The following definition is used to compare Markov chains.

Definition 2. Let {X(n), n ≥ 0} (resp. {Y (n), n ≥ 0}) be a DTMC. We say
{X(n), n ≥ 0} ≤st {Y (n), n ≥ 0}, if X(n) ≤st Y (n), ∀n ≥ 0.

Let P and Q be the probability transition matrix of {X(n), n ≥ 0} and {Y (n), n ≥
0} respectively. If the chains are ergodic, let πP and πQ denote the correspond-
ing steady state distributions, then πP ≤st πQ.

The following theorem provides sufficient conditions to establish the compar-
ison of DTMCs.

Theorem 2. Let P (resp. Q) be the probability transition matrix of the time-
homogeneous Markov chain {X(n), n ≥ 0} (resp. {Y (n), n ≥ 0}). The compar-
ison of Markov chains is established {X(n), n ≥ 0} ≤st {Y (n), n ≥ 0}, if the
following conditions are satisfied

• X(0) ≤st Y (0),
• at least one of the probability transition matrices is monotone, that is, either

P or Q (say P) is ≤st monotone, if for all probability vectors p and q,

p ≤st q =⇒ p P ≤st q P

which is equivalent to

1 ≤ i ≤ n− 1, P[i, ∗] ≤st P[i+ 1, ∗]

where P[i, ∗] denotes the row of matrix P for state i.
• the transition matrices are comparable in the sense of the ≤st order :

P ≤st Q⇔ 1 ≤ i ≤ n, P[i, ∗] ≤st Q[i, ∗]

3 Bounding performance measures under stationary
traffic

We present in this section the method we have developed in various publications
[4, 2, 3].



3.1 Queue model and Evolution equations

Let us begin with some notation. The number of transmission units produced by
the traffic source during the kth slot is denoted by A(k), and Q(k) and D(k) are
respectively the buffer length and the output (departure) traffic (flow) during the
kth slot. The buffer size is noted by B and the service capacity during a slot by
S. The input parameter A(k) is specified by a discrete distribution (histogram),
and the output parameters are also derived as histograms.

Fig. 2. Input and output parameters of a queueing model

The admission per packet is done with Tail Drop policy. Thus an arrival
packet is accepted if there is a place in the buffer, otherwise it is rejected. The
timing of events during a slot is as follows: arrivals occur first and they are
followed immediately by services. The evolution equations for the buffer length
(Q(k)) and the departure traffic (D(k)) can be given as follows:

Q(k) = min(B, (Q(k − 1) +A(k)− S)+), k ≥ 1, (2)

where operator (X)+ = max(X, 0).

D(k) = min(S, Q(k − 1) +A(k)), k ≥ 1. (3)

The model of the queue is a time-inhomogeneous Discrete Time Markov
Chains (DTMC), if the input arrivals are independent of the current queue state
and the past of the arrival process. Under the stationary arrival assumptions,
the underlying DTMC is time-homogenous.

The monotonicity of these equations under the ≤st order has been proved in
[2, 3]. Intuitively speaking, the monotonicity property states that if we consider
two models under different arrival processes but comparable in the sense of the
≤st order, then the corresponding output parameters are also comparable in the
sense of the ≤st order.

Let consider two queues. The first one is under arrival process A(k), k ≥ 0,
and the output parameters (queue length, and departure traffic) noted by Q(k)
and D(k), k ≥ 0. The second one is under arrival process Ã(k), with output
parameters: Q̃(k), D̃(k)). At the beginning, Q(0) ≤st Q̃(0) and D(0) ≤st D̃(0).
Without loss of generality, we assume that the queues are idle at k = 0, thus the



queue lengths and the departure processes are empty, thus Q(0) =st Q̃(0) and
D(0) =st D̃(0).

Theorem 3. If A(k) ≤st Ã(k), ∀k > 0, then

Q(k) ≤st Q̃(k), and D(k) ≤st D̃(k), ∀k > 0.

The monotonicity results follow from the fact that the ≤st order is associated
to increasing functions and the underlying measures are defined by increasing
functions of input parameters.

This theorem lets us to construct bounding systems. For instance, for a given
system, let say the one under the arrival process A(k), it is possible to construct
bounding performance measures, Q̃(k), D̃(k) by considering the bounding arrival
process Ã(k). Obviously, this approach is meaningful if the analysis under arrival
Ã(k) is more efficient to do. Notice that these are transient bounds thus the
comparisons are satisfied at each instant k, and also for the steady state if it
exists.

If a stationary bounding process Ã exists such that A(k) ≤st Ã, ∀k > 0,
it has been proved that the stationary bounding performance measures can be
derived by considering the system under the stationary bounding process Ã [3].
Clearly if both the real traffic (A(k)) and the (upper) bounding traffic (Ã(k)),
are stationary, we have the following corollary:

Corollary 1. Let A (resp. Ã) be the stationary exact (resp. upper bounding)
input histogram (distribution) such that A ≤st Ã, and Q, D (resp. Q̃, D̃) be the
stationary buffer length, departure flow under the exact A, (resp. upper bounding
Ã) input arrival. If Q(0) ≤st Q̃(0), and D(0) ≤st D̃(0), then we have:

Q ≤st Q̃ and D ≤st D̃.

The lower bounding case can be similarly derived.

3.2 Bounding histogram construction

The complexity of the numerical analysis of performance measures (Eq. 2-3)
depends on the arrival distributions whatever the used method is. We advocate
that, as the queue we model is stochastically monotone, it is possible to aggregate
the input distribution (to reduce the number of atoms) for deriving in an easier
way stochastic bounds on the performance measures. For a discrete distribution
of probability, the complexity parameter is the number of atoms. Therefore we
propose to apply the bounding approach to make the number of atoms smaller.
The main advantage of this approach is the computation of bounds rather than
approximations. Unlike approximations, the bounds allow us to have guarantees
and check if QoS are satisfied or not.

Let the input arrival process is specified by a probability mass function (dis-
crete distribution) d defined on N atoms. In [4], we have proposed an algorithm
to build an upper and a lower bounding distribution, d1 and d2 with n << N
atoms. Moreover, d1 and d2 are the optimal bounds with respect to a given



positive, increasing reward function, r . Formally, for a given distribution d de-
fined on H (|H| = N), we compute bounding distributions d1 and d2 defined
respectively on Hu, Hl (|Hu| = n, |Hl| = n) such that:

1. d2 ≤st d ≤st d1,
2.
∑
i∈H r(i)d(i)−

∑
i∈Hl r(i)d2(i) is minimal among the set of distributions

on n atoms that are stochastically lower than d ,
3.
∑
i∈Hu r(i)d1(i)−

∑
i∈H r(i)d(i) is minimal among the set of distributions

on n atoms that are stochastically upper than d .

Notice that ∀ i ∈ H and i /∈ Hu (resp. ∀ i ∈ H and i /∈ Hl), d1 (i) = 0 (resp.
d2 (i) = 0) to establish the stochastic comparisons. Thus d1 and d2 denote the
optimal bounding distributions on n atoms with respect to reward r .

The proposed algorithm is based on dynamic programming and has a com-
plexity of O(N2 n). Some heuristics with a smaller complexity which let to con-
struct stochastic bounds with the required number of atoms but which are not
in general optimal can be found in the same reference.

The number of atoms provide a trade-off between the accuracy of the bounds
and the computation time. It can be determined in an incremental manner:
one begins with a reduced number of atoms, if the accuracy of bounds is not
satisfactory, the number of atoms can be incremented. The iteration can be
stopped, if the required accuracy is reached and/or the computation time of
bounds exceeds a fixed threshold.

Example 2. Let d = [0.1, 0.4, 0.05, 0.15, 0.1, 0.2] be a discrete distribution de-
fined on a support H = {1, 2, 3, 4, 5, 6} (N = 6). For reward function r sets to
r(i) = ai, ∀ ai ∈ H, the expected reward of d is R[d ] =

∑
ai∈H r(i) d(i) = 3.35.

The computation of the optimal stochastic upper bound d1 (resp. lower
bound d2) of d with only 3 states (atoms) consists in exploring all 3 single
hops paths from the largest (resp. smallest) atom and select the path for which
R[d1]−R[d ] (R[d ]−R[d2] ) is the minimal.

We illustrate in the following figure the probability mass functions and the cu-
mulative distribution functions of the exact and the computed optimal bounding
distributions. The expected reward of the bounding distributions are: R[d2] =
3.1 and R[d1] = 3.8.

Fig. 3. d2 ≤st d ≤st d1: Probability mass functions (left) and cumulative distribution
functions (right).



3.3 Performance measure bounds under stationary arrivals

We are indeed interested in the performance analysis of the queue under real
traffic traces. We present here an example given in [3] under stationary traffic
assumption of real traces. We illustrate in Figure 4, a real traffic trace extracted
from the MAWI traffic traces [17]. Precisely, it corresponds to an IP traffic trace
during one hour for a 150 Mbps transpacific line (samplepoint-F) for the 9th of
January 2007 between 12:00 and 13:00. This traffic trace has an average rate
of 109 Mbps. Using a sampling interval of T = 40 ms (25 samples per second),
the resulting traffic trace has 90,000 frames (periods), an average of 4.37Mb per
frame and 80511 distinct values (atoms).
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Fig. 4. MAWI traffic trace.

We present in Figure 5, the lower and upper bounding histograms with n = 10
atoms for this trace, and the exact histogram without size reduction. The reward
considered in the histogram size reduction algorithm is the identity function in
order to construct optimal ≤st bounds with respect to the expectation. The
expectation of the original histogram (noted as exact) is 4.3757× 106 bits while
the expectation of the upper bound is 4.5843 × 106 bits, and that of the lower
bound is 4.1644× 106 bits.

In Figure 6, some performance measures under MAWI traffic using stochastic
bounds are given. We present respectively the blocking probability and the mean
buffer length for different values of reduction (atoms varying from 10 to 200).
In each figure, we give the results computed under: 1) exact MAWI histogram
(without reduction 80511 atoms), 2) Lower bound histogram and 3) Upper bound
histogram.

Through this example, we can see that the computed performance measures
are bounds on exact results. We observe also that when the size of the support
increases, the bounds become tighter. So, we can see here that in an empirical
way, we can reach the required accuracy with reduced complexity.



Fig. 5. Cumulative probability distributions (cdf) for the MAWI traffic.
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Fig. 6. Accuracy versus the number of atoms: QoS parameters using the MAWI traffic

4 SBBP input traffic

We now consider that the traffic is modelled by a Switched Batch Bernoulli
Process (SBBP)[8], and we show that our method can also be applied in this
case. The SBBP process is an arrival process modulated by a Markov chain.
This model is useful to characterise phase-dependent arrivals, i.e. the arrival
processes during different phases have different characteristics. If there are p
arrival phases, the phase evolution is controlled by a time-homogeneous DTMC
defined on state space P = {1, . . . , p}, Let F be the probability transition matrix
for phase changes, then F(i, j) is the probability of the transition from phase i
to phase j.

The state of the system at time k can be denoted by QP (k) = (Q(k), φ(k)).
The first component Q(k) is the number of entities in the buffer and φ(k) is
the arrival phase during slot k. In each arrival phase i ∈ P, the arrival process
Ai is assumed to be stationary and independently, identically distributed. The
underlying system {QP (k), k ≥ 0} is a time-homogeneous DTMC. During time
k, the arrival phase is φ(k), and the evolution of Q(k) is the same as in the
stationary arrival case, but under arrival Aφ(k) instead of A. Thus, Q(k) takes



values in the set N = {0 · · ·B}, and evolves as follows:

Q(k + 1) = min
(
B, (Q(k) +Aφ(k) − S)+

)
.

The evolution of the second component, φ(k) is controlled by a Markov chain.
The state space of {QP (k), k ≥ 0} is the product space S = N ×P.

4.1 Bounds under SBBP input traffic

We construct the bounding models by fixing the arrival phase, and the com-
parisons are established arrival phase by arrival phase. The comparison of two
states x, y ∈ S is defined by the partial order � on S:

Definition 3. Let x = (xq, xp), y = (yq, yp) ∈ S, where the first components
correspond to the buffer lengths (Q) and the second components correspond to
the arrival phases (φ).

x � y iff xq ≤ yq and xp = yp

In the bounding system denoted by Q̃P (k), the arrival processes in each phase
(Ãi) are the upper bounds of the real traffic (Ai) and they are constructed as
explained in subsection 3.2. Formally,

∀i ∈ P, Ai ≤st Ãi (4)

The second component of both models are controlled by the same DTMC inde-
pendently of the first component. We assume that at the beginning, k = 0,

(Q(0), φ(0)) =st (Q̃(0), φ̃(0)).

Thus, if we start with the same initial states in both models, the evolution of
the second component will be the same at each time k.

Corollary 2. Let Q, D be the steady-state marginal distributions of the buffer
length and the departure flow under arrival distributions Ai, while Q̃ and D̃
denote the corresponding distributions under the upper bounding arrival distri-
butions Ãi.

If Ai ≤st Ãi, ∀i ∈ P, then

Q ≤st Q̃ and D ≤st D̃.

Proof. By fixing the arrival phase, we derive bounds on conditional distributions.
At each time k, for all arrival phases i ∈ P, we have:

[Q(k) | φ = i] ≤st [Q̃(k) | φ = i] and [D(k) | φ = i] ≤st [D̃(k) | φ = i].

As the ≤st ordering is closed under mixtures (Theorem 1 in Section 2), we have
the comparison of the marginal distributions at each time k:

Q(k) ≤st Q̃(k) and D(k) ≤st D̃(k).

By construction, the steady-states exist, then it follows from the convergence in
distribution:

Q ≤st Q̃ and D ≤st D̃.



4.2 Numerical Analysis

Due to the SBBP arrivals, we have a block structured Markov chain.

P =


P11 P12 · · · P1p

P21 P22 · · · P2p

...
...

. . .
...

Pp1 Pp2 · · · Ppp

 .

Let (x1, x2) and (y1, y2) two states of the DTMC, and let Rφ be the transition
matrix of the system when the arrivals are in phase φ. The transition matrix P
of the Markov chain (QP (k)) is

P((x1, x2), (y1, y2)) = F(x2, y2)Rx2
(x1, y1).

Such a structured matrix is denoted as a functional Kronecker product in the
theory of Stochastic Automata Networks [19, 7]. It has many important proper-
ties which can be taken into account to obtain efficient numerical techniques.

Property 2. The Markov chain (QP (k)) of the model with SBBP arrival is
lumpable according to the partition defined by the phase of the arrival process.

Let πP (resp. πF) be the steady-state distribution for matrix P (resp. F). We
know that the lumpability implies that there exists p vectors ψj of size B + 1,
denoting the conditional queue length probabilities when the arrival phase is j.
The stationary distribution πP is then computed as follows:

πP(i) =

p∑
j=1

πF(j) ψj(i), ∀ i = 0 · · ·B.

To compute the steady-state solution of the model, we use the Iterative Aggrega-
tion Disaggregation (IAD) algorithm specialised for lumpable matrices published

in [7] to obtain successive values of vectors ψi which are denoted ψ
(t)
i at iteration

t. This algorithm is based on the following steps.

1. Initialise ψ
(0)
i , for all i

2. Compute πF, the steady state probability vector of F

3. Compute vectors ψ
(t+1)
i using a Block Gauss Seidel iteration for matrix P

in block form:

a) Z
(t+1)
i = πF(i)

ψ
(t)
i

||ψ(t)
i ||1

, ∀ i = 1 · · · p

b) ψ
(t+1)
i = ψ

(t)
i Pii +

∑p
j=i+1 Z

(t+1)
j Pji +

∑i−1
j=1 ψ

(t+1)
j Pji, ∀ i = 1 · · · p

4. Normalise vectors ψ
(t+1)
i to be distributions of probability

5. If
∑
i ||ψ

(t+1)
i − ψ(t)

i ||∞ is smaller than a threshold, go to step 6. Otherwise
set t = t+ 1 and go to step 3.

6. Compute πP, such that: πP(i) =
∑p
j=1 πF(j) ψ

(t)
j (i), ∀ i = 0 · · ·B.



Theoretically, in the first step we can initialise vectors ψ
(0)
i with any distribu-

tion of probability. Taking into account the properties of the arrivals during the
phases as defined in the next paragraph, we have used three phases and the fol-

lowing guess: ψ
(0)
1 = δ0, ψ

(0)
3 = δB , and ψ

(0)
2 equal to the steady state probability

vector of matrix R2 (transition matrix of the system when the arrivals are in
phase 2).

4.3 Numerical Results

In order to illustrate the results stated in this paper, we propose to compute the
performance measures of a finite single queue under real traffic trace modelled
as SBBP arrival process and constant service. We consider the MAWI trace [17]
which corresponds to a little more than 10 hours of an IP traffic on transpacific
line with link capacities of 128 Kbps, carried between the 6th of march 2007 at
18 : 00 and the 7th of march 2007 at 4 : 24 : 27. For a sampling period T = 40
ms, we obtain the trace shown in Figure 7 with 922873 frames and 4579 different
atoms.
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Fig. 7. MAWI traffic trace (more than 10 hours).

We distinguish three phases, phase 1 corresponds to low traffic, phase 2 to
medium traffic, and phase 3 to heavy traffic. We assume that for each slot, the
traffic trace is characterised by its volume per sampling period. If the traffic per
sampling period is less or equal to the minimum threshold (10 Kbps), the arrival
phase is 1, and if it is greater or equal to the maximum threshold (100 Kbps),
the arrival phase is 3. When the traffic is between the thresholds, the arrival
phase is 2. In each phase, the traffic is defined by a stationary arrival process
associated to this phase. The probability transition matrix for phase modulation
is defined as follows:

F(i, j) =
number of transition between phase i and phase j

number of slots in phase i
.



The resulting transition matrix of phases F is

F =

 0.9982 0.0018 0.0000
0.5563 0.4163 0.0274
0.2706 0.2615 0.4679


The histogram of each phase is defined respectively on 1228 atoms (phase 1),
2568 atoms (phase 2) and 783 atoms (phase 3). They are characterised by the
following statistical descriptions:

Expected value (bits) Standard deviation (bits) Coefficient of variation

Phase 1 433.56 1.0503 × 103 5.8684

Phase 2 28953 2.13 × 104 0.5413

Phase 3 2.1515 × 105 1.2844 × 105 0.3564

Table 1. Statistical descriptions of the considered MAWI traffic trace.

Let us emphasize here that our goal is not to study how to obtain an accurate
SBBP model for a given trace. We just aim to construct such a model to apply our
bounding algorithms and explain how our approach works and can be accurate if
the input arrival is a SBBP process. The thresholds have been arbitrarily chosen.
The statistical analysis of traces to derive fitting models is out of the scope of
this paper.

We now apply our numerical bounding approach to this model to obtain two
performance measures (expected buffer length and blocking probability) versus
the buffer size (B) which varies from 100 Kb to 3 Mb. We consider a deterministic
service capacity of 35 Kbps. The bounding histograms (noted by L.b for the lower
bound and by U.b for the upper bound) are constructed on reduced state space
with 100 atoms. The exact results (without reduction) and the bounds of these
performance measures are given in Table 2. The computation times are presented
in Table 3.

We observe that the computed bounds under SBBP arrivals are relevant, es-
sentially for the upper bound and the accuracy of bounds is not degraded when
the histogram sizes increase. In terms of complexity, we remark that the compu-
tation times of bounds are significantly less than the exact one (the computation
time is divided approximately by three when B = 106, by four when B = 2×106,
and by five for B = 5× 106). In view of these results, we can conclude and say
that in order to satisfy the required QoS constraints the use of stochastic bounds
for SBBP arrivals observed through measurements offer to the user an interesting
tradeoff between accuracy of the results and the computational complexity.

Regarding the difference between stationary input traffic and SBBP traffic,
we note that the blocking probabilities and the expected buffer length are much
greater for SBBP traffic except for the small buffer values. This phenomenon is



SBBP input traffic Stationary input traffic

Blocking probabilities (BP) Expected buffer length (E[Q]) BP E[Q]

B Exact L.b U.b Exact L.b U.b Exact

105 0.0032218 0.0031552 0.0035345 19297.7 17628.2 19448.6 0.00419 21651.7

2 × 105 0.0021574 0.0020811 0.0022456 46352.2 41679.7 46696.1 0.00238 51641.8

5 × 105 0.0012534 0.0011796 0.0013074 154693 137686 156254 0.00101 147084

106 0.0008447 0.0007416 0.0008902 401307 351574 405695 0.000295 260630

2 × 106 0.0005545 0.0004148 0.0005890 975858 813564 985124 1.75742e-05 304474

5 × 106 0.0003562 0.0001691 0.0003835 3046090 2205710 3077930 1.62373e-10 306020

Table 2. Blocking probabilities and expected buffer lengths versus buffer size.

SBBP input process Stationary input process

B Exact L.b U.b Exact

105 2.58 2.41 2.29 78.6

2 × 105 5.584 4.45 3.89 554.55

5 × 105 41.94 17.37 17.70 3710.7

106 203.61 74.08 79.57 7564.05

2 × 106 1180.62 359.61 422.9 13736.2

5 × 106 14085 3325 3695 44999.4

Table 3. Computation times in second.

due to the dependence of the variance of the arrival process. We note that the
mean input stream for both traffic (stationary and SBBP) is identical, however
we have more variance in the SBBP model which is reflected in its performance
measures.

5 Conclusion

The stochastic performance bounds of a queue under stationary histogram-based
input traffics is generalised to the Markov modulated arrivals. The traffic is as-
sumed to be stationary during a phase and the traffic phase transition is con-
trolled by a DTMC. We illustrate the applicability of this approach by giving
some numerical results for a system with arrivals derived from a real traffic
trace. We want to emphasize that despite the bivariate process we can use
strong stochastic bounds rather than weak or weak* comparisons (see [14]).
The techniques we develop here and the associated publications [2, 3] lead to an
algorithmic analysis of queues based on measurements for the arrival process.
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