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Abstract—In this paper, we propose to model a node cloud
by a threshold based queueing system with hysteresis. The client
requests (or jobs) arrive into the buffer, and are executed by
service centers or Virtual Machines (VMs). We suppose that
virtual machines are activated and deactivated according to
the occupation of the queue, in order to model the dynamic
behavior of the system. The queueing model is represented by a
forward threshold sequence which has different values than the
reverse threshold sequence. The forward thresholds represent the
numbers of the customers in the queue from which we increase
by one the number of VMs. Similarly, the backward thresholds
are the values from which we decrease by one the number
of VMs. When the forward thresholds are different then the
backward thresholds then hysteresis is present. The relevance of
hysteresis for the cloud model is to reduce the frequent transitions
between activation and deactivation states of the VMs. We will use
stochastic comparison method in order to prove and guarantee
that the hysteresis model can be bounded by models with the same
sequences of forward and backward threshold. The advantage of
the bounding models is that the stationary probability distribution
can be computed exactly and easily from a mathematical formula.
We present some numerical results for the performance measures
in order to show that the bounding values provide an accurate
coverage for the exact values.

I. INTRODUCTION

Cloud computing is an emerging distributed technology
that promises to offer cost-effective scalable on-demand to
users without the need for large up-front infrastructure invest-
ments. Cloud computing is proved to be profitable for a small
scale or large scale business. A cloud computing platform
can provide a variety of resources, including infrastructure,
software, and services to users in an on-demand fashion.

Virtualization plays a key role in the success of cloud
computing as the resources can be used more efficiently. One
physical host can have more than one VM (Virtual Machine: it
is a software that can run its own operating system and appli-
cations just like an operating system on a physical computer).
With this flexibility, the cloud providers can rent the virtual
machines depending on the demand and can gain more profit
out of a single physical machine. With virtualization, service
providers can ensure isolation of multiple user workloads,
provision resource in a cost-effective manner by consolidating
VMs onto fewer physical resources when system load is low,
and quickly scale up workloads to more physical resources
when system load is high. In [8], they study the right ratio
of VM instances to physical processors that optimizes the
workload’s performance given a workload and a set of physical

computing resources. Performance evaluation of cloud centers
is an important research task which becomes difficult because
the dynamic nature of cloud environments and diversity of user
requests. Then, it is not surprising that in the recent area of
cloud computing, only a portion of research results has been
devoted to performance evaluation. In [5], they develop an
analytical model in order to evaluate the performance of cloud
centers with high degree of virtualization and Poisson batch
arrivals. The model of the physical machine with m VMs is
based on the M [x]/G/m/m + r queue. They derive exact
formulas for performance measures as blocking probability
and mean waiting time of tasks. In [4], they consider a cloud
center with a number of physical machines that are allocated
to users in the order of task arrivals. Physical Machines (PMs)
are considered with high degree of virtualization, and are cat-
egorized into three server pools: hot, warm, and cold. Authors
implement the sub-models using interactive Continuous Time
Markov Chain (CTMC). The sub-models are interactive such
that the output of one sub-model is input to the other one.

In this paper, we propose to use a queueing model based
on queue-dependent virtual machines in order to represent
the PM. With this model, virtual machines which are already
provisioned are activated and deactivated in order to implement
scaling up and down. The queueing model is a multi-server
VMs with threshold queues and hysteresis [2]. The multi-
server VMs with hysteresis is governed by sequence of forward
and reverse thresholds which are different. The forward (resp.
the backward) thresholds represent the value of the number of
customers from which an additional VM is activated (resp.
deactivated). Obviously, the relevance of this model is to
offer the flexibility of different thresholds for activating and
removing VMs. Moreover, the hysteresis prevents the frequent
activation or deactivations of VMs which could be costly in
energy consumption. We will use stochastic comparisons in
order to bound the hysteresis system by models where the
threshold sequence for activating is equal to the sequence for
removing the VMs. The advantage of this models is that the
Markov chain is very easy to solve as the stationary probability
has a simple closed form. We derive bounds for performance
measures as blocking probability, and mean number of cus-
tomers in the buffer. We give some numerical values according
to different values of input parameters: arrival rate and the
number of VMs (called the degree of virtualization). The paper
is organized as follows: next, we describe the cloud system, in
section 3, we present the queueing model for the analysis.
In section 4, we give the bounding models and we prove
using the stochastic comparisons that they represent really



bounds. In the section V, we give numerical results of the
performance measures. Finally, achieved results are discussed
in the conclusion and comments about further research issues
are given.

II. CLOUD SYSTEM DESCRIPTION

We assume that the cloud center consists of many PM
(Physical Machines), each of which can host a lot of VMs
(Virtual Machines), as shown in Fig 1. Incoming requests are
routed through a load balancing server to one of the PMs.
Different users may share a PM (Physical Machine) using
virtualization technique which provides a well defined set of
resources (as CPU, RAM, storage). We focus our study on one
PM, and we suppose that it is represented by a buffer which
contains the requests waiting for service. The VMs provide
service for customer requests, and each of them has been
allocated with the different computing resource. The buffer has
a finite capacity, so an arriving requests can be rejected if it
finds the buffer full. This system provides the dynamicity of the
service according to the scalability of user requests. In order
to have a system able to handle the variability of the traffic
intensity, the VM are activated and deactivated according to the
system occupancy. In fact, the buffer management is defined
by thresholds for the number of customer waiting in the
queue, which activate or deactivate the VMs. Clearly, when
the number of customers in the queue reaches a threshold,
then a new VM is activated, and when it decreases below the
threshold, a VM is deactivated. In the next section, we give
the queueing model used for the analysis of the performance
of the cloud node.

Fig. 1. Cloud center architecture.

III. MODEL DESCRIPTION

We consider a finite buffer capacity with multi-
homogeneous servers (VMs). We suppose a K multi-server
with thresholds-based queueing system and hysteresis for
which a set of forward thresholds (F1, F2, . . . , FK−1) and a set
of reverse thresholds (R1, R2, . . . , RK−1) are defined. We as-
sume that F1 < F2 < . . . < FK−1, R1 < R2 < . . . < RK−1,
and Ri < Fi, ∀1 ≤ i ≤ K − 1. The behavior of this system
is as follows. We assume that the first VM is still active in
the system. If a customer arrives in the system, and finds Fi

(i = 1, . . . ,K−1) customers in the system, then an additional
VM will be activated. When a customer leaves the system with
Ri (i = 1, . . . ,K − 1) customers, then a VM will be removed
from the active VMs. We denote by X(t) the model where
each state is represented by (x1, x2), with x1 is the number
of customers waiting in the system and x2 is the number of

active VMs. We suppose that client request arrivals follow
Poisson distribution with rate λ, and servers (or VM) have an
exponential service time distribution with mean rate µi = µ
(i = 1, . . . ,K). We suppose that the system has a finite buffer
capacity B. With these assumptions, we deduce that the system
X(t) is a continuous-time Markov chains defined over the state
space A such that:

A = {(x1, x2) | 0 ≤ x1 ≤ F1, if x2 = 1;

Ri−1 < x1 ≤ Fi, if x2 = i and 1 < i < K;

RK−1 < x1 ≤ B, if x2 = K}.

The evolution equations of X(t) are defined for i = 1 . . .K−1
as follows:

(x1, x2) → (min{B, x1 + 1}, x2),

with rate λ,

if (x1 6= Fi or (x1 = Fi and x2 6= i)),

→ (min{B, x1 + 1},min{K,x2 + 1}),

with rate λ,

if x1 = Fi and x2 = i,

→ (max{0, x1 − 1}, x2),

with rate x2µ,

if (x1 6= Ri + 1 or (x1 = Ri + 1 and x2 6= i+ 1))

→ (max{0, x1 − 1},max{0, x2 − 1}),

with rate x2µ,

if x1 = Ri + 1, and x2 = i+ 1,
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Fig. 2. Example of state transition graph for a three-servers system.

Obviously, this system has been already studied in the
literature [2] and [6]. In [2], the authors propose to use Green’s
function method which is not so easy to apply as the formalism
is not intuitive. In [6], the authors use the concept of stochastic
complementation to solve the system. They propose to partition
the state space in disjoints sets in order to aggregate the
Markov chain. Contrary to these two approaches, we propose
in this paper to define bounds rather than an exact resolution
of the system. The relevance of using bounds is first to reduce
the state space size of the system and to derive very simple
closed-form of the steady state probability distribution. Next,
we propose to define new systems by the modification of the
exact system, and we prove that they represent bounds for
some performance measures.

IV. BOUNDING SYSTEMS

We propose to define bounding systems which are easier
to solve. These systems are equivalents to the exact system,



except that the forward and the reverse thresholds are the
same. For the upper bound, we take (F1, F2, . . . , FK−1) for
the forward thresholds and the reverse thresholds. And, for
the lower bound, we take (R1, R2, .....RK−1) for the forward
and the reverse thresholds. The behavior of each of these
systems is represented by a Markov chain defined on state
space S = {0, . . . , B}. Moreover, the stationary probability
distribution has a very simple closed form. We denote by
Y (t) the Markov chain associated to the upper bound (with
(F1, F2, . . . , FK−1) for the forward and the reverse thresh-
olds). The evolution equation of this model is given as follow:

x → min(B, x+ 1), with rate λ

→ max(0, x− 1),

with rate iµ, if Fi−1 < x ≤ Fi, ∀i = 1 . . .K − 1

with rate Kµ, if FK−1 < x ≤ B

where F0 = 0.
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Fig. 3. Example of state transition graph of upper bound model for a three-
servers system.

The steady state probability distribution of the system has
a known closed-form [3]. Let Pi be the probability to have i
customers in the system, and ρi =

λ
iµ

. We have the following

equations:

Pn = ρn1P0, if 1 ≤ n ≤ F1 (1)

Pn = Πj−1
i=1ρ

Fi−Fi−1

i ρn−Fj−1P0,

if Fj−1 < n ≤ Fj , j = 2, . . . ,K − 1 (2)

Pn = ΠK−1
i=1 ρ

Fi−Fi−1

i ρ
n−FK−1

K P0,

if FK−1 < n ≤ B (3)

where F0 = 0, and P0 is such that:

P0 =
1− ρF1+1

1

1− ρ1
+

K−1∑

j=2

Πj−1
i=1ρ

Fi−Fi−1

i

ρj − ρ
Fj−Fj−1+1
j

1− ρj

+ΠK−1
i=1 ρ

Fi−Fi−1

i

ρK − ρ
B−FK−1+1
K

1− ρK
(4)

In the same way, we defined by Z(t) the Markov chain
which represents the lower bound (with (R1, R2, . . . , RK−1)
for the forward and the reverse thresholds). In this case, the
above equations (evolution equation and equations (1)-(4)) are
also available by changing the sequence Fi, i=1...K−1, by the
sequence Ri, i=1...K−1. Next, we will prove that Y (t) (resp.
Z(t)) is a stochastic upper bound (resp. lower bound) for
X(t). The bounding systems provide bounds for performance
measures as mean number of customers, mean response times,
and blocking probabilities. Now, we give some definitions and
theorems about stochastic ordering theory.

A. Stochastic ordering theory

We give some theorems and definitions about stochastic
orderings [7] used in this paper. We consider a discrete, and
countable state space A, endowed by a binary relation � which
is at least a preorder [7]. As an example, on the state space
A = R

n, component-wise order is a partial order, and on
A = R, ≤ is a total order. In the sequel, � denotes at least a
preorder on A. We consider two independent random variables
X and Y defined on A. The most known stochastic ordering
is the strong stochastic ordering, and it is denoted by �st. It
could be defined using increasing functions as follows [7].

Definition 1: X �st Y ⇐⇒ Ef(X) ≤ Ef(Y ), for all
non decreasing functions f : A → R

+ whenever expectations
exist.

We can also compare stochastic processes. Let
{X(t), t ≥ 0} and {Y (t), t ≥ 0} be stochastic processes
defined on A.

Definition 2: We say that {X(t), t ≥ 0} �st

{Y (t), t ≥ 0} , if X(t) �st Y (t), ∀t ≥ 0

When the processes are defined on different states spaces we
can compare them on a common state space using mapping
functions. Let {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0}) defined on
A (resp. B), g (resp. h) be a many to one mapping from A
to S, (resp. B → S). Next, we compare the mapping of the
process {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0}) by the mapping
function g (resp. h), which means g(X(t)) (resp. h(Y (t))), on
the common state space S.

The stochastic comparisons of processes by mapping func-
tions is defined as follows [1]:

Definition 3: We say that {g(X(t)), t ≥ 0} �st

{h(Y (t)), t ≥ 0} , if g(X(t)) �st h(Y (t)), ∀t ≥ 0

We can use the coupling method for the stochastic comparison
of the processes. For the �st ordering, the coupling method can
be used for the stochastic comparison of CTMCs. As presented

in [1], it remains us to define two CTMCs: {X̂(t), t ≥ 0} and

{Ŷ (t), t ≥ 0} governed by the same infinitesimal generator
matrix respectively as {X(t), t ≥ 0}, and {Y (t), t ≥ 0},
representing different realizations of these processes with
different initial conditions. The following theorem establishes
the �st-comparison using the coupling [1]:

Theorem 1:

{g(X(t)), t ≥ 0} �st {h(Y (t)), t ≥ 0} (5)

if there exists the coupling {(X̂(t), Ŷ (t)), t ≥ 0} such that:

g(X̂(0)) � h(Ŷ (0)) ⇒ g(X̂(t)) � h(Ŷ (t)), ∀t > 0 (6)

B. Stochastic comparison proofs

In this section, we prove that the system with different
thresholds for increasing and decreasing of the number of
virtual machines (denoted X(t)) is a stochastic lower bound
for Y (t), and a stochastic upper bound for Z(t). As X(t)
and Y (t) represent Markov chains defined on different state
spaces, then we will compare them by a mapping function on
a common state space. We define the many to one mapping
function g : A → S, such that g(x) = x1, and in the state



space S, we use the total order ≤. We apply the stochastic
ordering theory presented before by considering the total order
≤ as a particular case of preorder �. Next, we use the
stochastic ordering ≤st instead of �st, and we will prove that
g(X(t)) ≤st Y (t). We have the following theorem:

Theorem 2: If X(t), Y (t), and Z(t) represent the systems
defined previously, then we have:

1) g(X(0)) ≤st Y (0) ⇒ g(X(t)) ≤st Y (t), ∀t > 0
2) Z(0) ≤st g(X(0)) ⇒ Z(t) ≤st g(X(t)), ∀t > 0

Proof: For the proof, we apply the theorem 1, in order
to use the coupling by the mapping function for the stochastic
comparison. In our case, we have X(t) defined on A, g a
mapping function A → S, Y (t) defined on S, and h is the
identity function. The proof is done by induction: we consider
X(t) = x and Y (t) = y, such that g(x) ≤ y and we prove
that for any event, at time t + dt, if X(t + dt) = x′, and
Y (t + dt) = y′, then g(x′) ≤ y′. As the transitions for the
processes can be only increasing by one or decreasing by one,
then for the comparison we take only states such that g(x) = y
(or x1 = y, as g(x) = x1) because for only these states, the
order may be not verified after transitions due to arrivals or
services. In fact, for states x and y such that g(x) < y, then
we are sure that with transitions causing an increasing or a
decreasing by 1, the process still verify g(x) ≤ y.

We consider now the two events for the proof of the
stochastic comparison by the mapping function g:

• Arrivals: if we have a transition from x to x′ such that
x′

1 = x1+1, then we are sure that we can have also a
transition from y to y′ such that y′ = y + 1. Because
the arrival rate λ is the same in the two systems. So,
as x1 = y, then x1 + 1 = y + 1, and we deduce that
g(x′) ≤ y′.

• Services: if we have a transition from y to y′ such
that y′ = y − 1, then we are sure that we have also
a transition from x to x′ such that g(x′) = x1 − 1 =
y − 1. As the threshold for deactivation is lower in
X(t) than in Y (t), then the rate for decreasing in Y (t)
is lower than in X(t). So g(x′) ≤ y′.

So we deduce that for any events, we have: g(X(t+dt)) ≤
Y (t + dt), and from theorem 1, we deduce that in theorem
2, equation 1 is verified. For the lower bound, the proof is
similar, except the inequalities are reversed. For a state X(t) =
(x1, x2), and a state Z(t) = z, such that g(x) = z, which
corresponds to x1 = z, then at time t + dt, we consider the
two cases: arrivals, and services. For the arrivals, as the rates
are the same, then the order is kept. For the services, then as
the threshold for VM activation is lower in Z(t), then X(t),
then the service rate is upper in Z(t) than in X(t), so Z(t)
is really a lower bound, and we deduce that in theorem 2,
equation 2 is verified.

V. NUMERICAL EXAMPLES

In this section, we present numerical examples which
illustrate the behavior of the threshold-based queueing system
with hysteresis and the bounding models presented in the
paper. We compare these three models by computing some
performance measures. We also present the activation and

deactivation rate of the servers, associated with each model.
Indeed, it is important to mention that the threshold-based
queueing systems with hysteresis is introduced in order to
avoid costly and frequent oscillations around the forward
threshold. We note here that the hysteresis model is solved
using the approach presented in [6]. We begin with a small
example. We consider a system with number of servers, K,
equal to 5. The forward and reverse threshold vectors are set
to F = (8, 12, 20, 30) and R = (5, 9, 15, 23), respectively.
The buffer size is B = 40, the service rate µ is set to 1.1,
and the average arrival rate λ is varied from 0.5 to 5. For
this example, we note that the length of the state space of the
hysteresis model is 59 states while the bounding models are
defined on 41 states. The solution of all models (i.e., hysteresis
model, upper and lower bound models) is carried out using
MATLAB.

We depict in Figures 4 and 5 the blocking probability, the
expected buffer length and the expected departure computed
for different values of arrival rate.
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Fig. 4. QoS parameters versus arrival rate.
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Fig. 5. Expected departure versus arrival rate.

From these figures, it is clear that the computed perfor-
mance measures (blocking probability, mean buffer length and
mean throughput) grow as the arrival rate increases. Moreover,
we can observe that the bounding model really compute



bounds and gives a good coverage on performance measures
of the hysteresis model. We note also that the average time
required to resolve the original model is 0.0084 seconds while
the lower and upper bound models require an average time
of 1.5516× 10−4 seconds. We present now an other example
and study the activation and deactivation rate of servers in
the different models. We consider queue with hysteresis with
Poisson arrivals, where K = 50, B = 5000 and µ = 81. The
forward threshold is set to F = (150 : 100 : 4950) and the
reverse threshold vector is taken equal to R = F − 100. We
vary the value of arrival rate from 100 to 600. We note that
for this example, the length of the state space of the hysteresis
model is 9901 states while the bounding models are defined on
5001 states. At this step, we can already make a first comment
on the state space size of the hysteresis model. Indeed, we can
notice that it is significantly larger than the state space size
of the bounding models. We give respectively in Table I and
Table II the activation rate of servers and deactivation rate of
servers for the different values of arrival rate.

λ Original model U.B. model L.B. model

100 0.23225 8.9773 8.9775

200 1.9802 16.6032 16.6032

300 2.9703 15.6474 15.6474

400 3.9604 7.7175 7.7175

500 4.9505 11.3768 11.3768

600 5.9406 18.2155 18.2155

TABLE I. ACTIVATION RATE OF SERVERS.

λ Original model U.B. model L.B. model

100 1.7921 23.5600 23.5604

200 2.7822 24.5100 24.5100

300 3.7723 18.2549 18.2549

400 4.7624 8.5868 8.58678

500 5.7525 14.3824 14.3824

600 6.7426 21.2290 21.229

TABLE II. DEACTIVATION RATE OF SERVERS.

We note that the rates of activation and deactivation of
the servers (VMs) in bounding models are significantly greater
than those of the hysteresis model. Indeed, the use of threshold
system with hysteresis allows us to avoid to switch too much,
and stay more longer with an active server and therefore
minimize the cost of activation and deactivation of the servers.
As a result, we clearly observe the interest that may represent
the threshold system with hysteresis for the modeling in cloud
system. We give also some results on performance measures.
In Table III, we present results on average buffer length while
Table IV is devoted to the average departure. This experiment
yields to the same conclusions as above. Indeed, we can see
that the results provided by the bounding models are accurate
and gives a good coverage on the results of the hysteresis
model. Concerning the mean execution time, the computation
of the upper (resp. lower) bound model takes 0.0775 second
which is significantly lower than 65.1068 seconds needed to
solve the original model.

VI. CONCLUSION

We propose in this paper a queue-dependent multiserver
VMs with hysteresis in order to model the behavior of a

λ Original model U.B. model L.B. model

100 97.3498 147.3500 47.3506

200 200.3880 250.3880 150.3880

300 308.2100 358.2100 258.2100

400 438.0840 488.0840 388.0840

500 577.5930 627.5930 527.5930

600 695.4770 745.4770 645.4770

TABLE III. EXPECTED BUFFER LENGTH VERSUS ARRIVAL RATE.

λ Original model U.B. model L.B. model

100 9834.98 14735.0 4735.06

200 40277.60 50077.6 30077.60

300 92763.00 107463.0 77463.00

400 175633.00 195233.0 155233.00

500 289297.00 313797.0 263797.00

600 417886.00 447286.0 387286.00

TABLE IV. EXPECTED DEPARTURE VERSUS ARRIVAL RATE.

PM in a cloud node. The relevance of this model is to
represent the dynamicity of the resource according to the queue
occupation, and with the hysteresis to reduce the cost due to
activation/deactivation of the VMs. However, this system could
be difficult to analyse when the number of VMs increases,
so we propose to use bounding techniques in order to derive
bounds for the performance measures. From the numerical
results, we have seen clearly the accuracy of bounds. As a
future work, we expect to investigate a more general system by
considering batch arrivals and heterogeneous servers (VMs).
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