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Abstract—We propose to evaluate the performance of a
cloud node (data center) using hysteresis queueing systems and
stochastic bound methods. We represent the dynamic behavior
of the cloud node by a hysteresis queueing system with forward
and backward threshold vectors. The client requests (or jobs) are
represented by bulk arrivals entering the buffer, and executed
by Virtual Machines (VMs) which are activated and deactivated
according to the occupation of the queue, and the threshold
sequences. As the system is quite difficult to analyze, we propose
to define different bounding systems “less complex” and easier
to study. Two approaches are used, one by aggregating the
probability distribution of the batch arrivals and another by
taking models with the same sequences of forward and backward
thresholds. We show the relevance of the proposed bounding
systems by presenting some numerical results for the performance
measures of a data center.

Keywords—Cloud performance; Stochastic bounds; Markov
Chains.

I. INTRODUCTION

Cloud computing is a novel virtualized distributed tech-
nology in which different computing resources are made
accessible over the internet to remote users in an on-demand
fashion. Virtualization plays a key role in the success of cloud
computing because it simplifies the delivery of the services
by providing a platform for resources in a scalable manner.
With virtualization, service providers can ensure isolation of
multiple user workloads and provision resource in a cost-
effective manner by consolidating Virtual Machines (VMs)
onto fewer physical resources when system load is low, and
quickly scale up workloads to more physical resources when
system load is high. In [1], they study the right ratio of VM
instances to physical processors that optimizes the workload’s
performance given a workload and a set of physical computing
resources.

Performance evaluation of cloud centers is an important
research task which becomes difficult due to the dynamic
nature of cloud environments and diversity of user requests.
Then, it is not surprising that in the recent area of cloud
computing, only a portion of research results has been devoted
to performance evaluation.

In [2], they propose an analytic approach based on multi-
level interactive stochastic sub-models in order to evaluate the
performance of a cloud system. In [3], they model the PM
(Physical Machine) with m VMs using the M [x]/G/m/m+r
queue. They derive exact formulas for performance measures

as blocking probability and mean waiting time of tasks. In
[4], they consider a cloud center with a number of physical
machines that are allocated to users in the order of task arrivals.
Physical Machines (PMs) are considered with high degree
of virtualization, and are categorized into three server pools:
hot, warm, and cold. Authors implement the sub-models using
interactive Continuous Time Markov Chains (CTMCs). In [5],
they use a multiserver queueing model with queue dependent
heterogeneous servers in order to evaluate the performance of
a cloud system.

We propose in this paper to generalize the model presented
in [5], by considering a multi-server queueing model with
threshold queues and hysteresis [6] in order to evaluate the
performance of a cloud node (data center). We suppose that
request arrivals are represented by a bulk arrivals process. In
this model, virtual machines are activated and deactivated ac-
cording to the intensity of user demand. Each server represents
a VM, and the multi-server queueing model with hysteresis
is governed by sequences of forward and reverse thresh-
olds which are different. The forward (resp. the backward)
thresholds represent the values of the number of customers
from which an additional VM is activated (resp. deactivated).
Obviously, the relevance of this model unlike the models
proposed in [2]–[4] is to offer the flexibility of different
thresholds for activating and deactivating VMs. Moreover, the
hysteresis prevents the frequent activation or deactivation of
VMs which could be costly in energy consumption.

As the system is difficult to analyze exactly, especially
when the number of servers or the size of the batch arrivals
distribution increases [7], we propose to use stochastic com-
parisons in order to compute performance measure bounds.
We define bounding systems easier to solve in order to have a
trade-off between accuracy and computation times which could
be relevant for network dimensioning.

Several performance metrics as blocking probability, mean
number of customers in the buffer and mean number of
departures are evaluated according to different values of input
parameters: buffer size, number of VMs (called also the degree
of virtualization), and utilization rate. The paper is organized
as follows: next we describe the cloud system, in Section
III, we present the hysteresis queueing system used to model
a data center. In section IV, we give a brief description of
stochastic ordering theory and in Section V, the bounding
models are presented with stochastic comparisons proofs.
In the section VI, we give some numerical results for the
performance measures of the cloud system. Finally, achieved
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results are discussed in the conclusion and comments about
further research issues are given.

II. CLOUD SYSTEM DESCRIPTION

We consider a data center in a cloud system composed of
Physical Machines (PMs) with each physical machine hosting
many Virtual Machines (VMs) [5], as illustrated in Figure 1.
Incoming job requests are assumed to be a bulk arrival process
and are enqueued in the queue. Such a queue has a finite size
C; so, an arriving request can be rejected if it finds the buffer
full. The system queue is managed according to a FIFO (First
In First Out) scheduling policy. When a resource is available,
a job is accepted and the corresponding VM is instantiated.
We assume that the instantiation time is negligible.

In order to have a system able to handle the variability of
the traffic intensity, we propose to activate and deactivate the
VMs according to the system occupancy. In fact, the buffer
management (the scheduler) governed by thresholds vectors
and by the number of customer waiting in the queue, controls
the operation of activating and deactivating the VMs. So, this
system provides the dynamicity of the service according to the
scalability of user requests. More formally, when the number
of requests in the queue reaches a threshold, a new VM is
activated, and in the same way, when it decreases below the
threshold, a VM is deactivated. We detail in the next section,
the considered queueing model used for the analysis of the
performance of the cloud node.

Fig. 1. Cloud center architecture.

III. MODEL DESCRIPTION

We consider a queue with a finite buffer capacity and multi-
homogeneous servers (VMs) [7]. We suppose a K multi-server
thresholds-based queueing system with hysteresis for which a
set of forward thresholds (F1, F2, . . . , FK−1) and a set of re-
verse thresholds (R1, R2, . . . , RK−1) are defined. We assume
that F1 < F2 < . . . < FK−1, R1 < R2 < . . . < RK−1,
and Ri < Fi, ∀1 ≤ i ≤ K − 1. The behavior of this system
is as follows. We assume that the first VM is still active in
the system. If a customer arrives in the system and finds Fi

(i = 1, . . . ,K − 1) customers, then an additional VM will
be activated. When a customer leaves the system with Ri

(i = 1, . . . ,K − 1) customers, then a VM will be deactivated
from the active VMs. We denote by X(t) the model where
each state is represented by x = (x1, x2), with x1 is the
number of customers waiting in the system and x2 is the
number of active VMs. We suppose that job request arrivals
follow a bulk-arrival process. So, we consider that requests
are bulks (or batches), which arrive according to a Poisson

process with rate λ, and length of bulks follow a probability
distribution defined as follows: p = (p1, p2, . . . , pk, . . . , pn),
where pk = Pr[bulk length is k, k ∈ E], E ⊂ N, and we
suppose that the size of E is n. Servers (or VMs) have an
exponential service time distribution with mean rate µi = µ
(i = 1, . . . ,K). We suppose that the system has a finite
capacity C. With these assumptions, we deduce that the system
X(t) is a Continuous-Time Markov Chain (CTMC) defined
over the state space A such that:

A = {(x1, x2) | 0 ≤ x1 ≤ F1, if x2= 1;

Ri−1 < x1 ≤ Fi, if x2= i and 1 < i < K;

RK−1 < x1 ≤ C, if x2= K}.
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Fig. 2. State transition diagram for three-servers.

The evolution equations of X(t) are defined as follows:

(x1, x2) → (min{C, x1 + k}, x2),

with rate λpk, ∀ k ∈ E

if (x1 + k) ≤ Fj , and x2= j,

→ (min{C, x1 + k},K),

with rate λpk, ∀ k ∈ E

if x2= K or (x1 + k) > FK−1,

→ (min{C, x1 + k}, l),
with rate λpk, ∀ k ∈ E

if l = min{h|(x1 + k ≤ Fh) and x2+1 ≤ h ≤ K-1},
→ (max{0, x1 − 1}, x2),

with rate x2µ,

if (x1 ̸= Ri + 1 or (x1 = Ri + 1 and x2 ̸= i+ 1))

→ (max{0, x1 − 1},max{0, x2− 1}),
with rate x2µ,

if x1 = Ri + 1, and x2= i+ 1,

where i, j = 1, . . . ,K-1. In the Figure 2, we illustrate the
transition graph of such a Markov Chain.

Obviously, this system has been already studied in the
literature [7]. In the paper, the authors use the concept of
stochastic complementation to solve the system. They propose
to partition the state space in disjoints sets in order to aggregate
the Markov chain. The main advantage of this method is
to obtain exact performance results, with reduced execution
times. In this paper, we propose another approach by defining
bounds rather than an exact resolution of the system which is
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often very cumbersome. Indeed, the relevance of using bounds
is first to reduce dynamically the state space size of the system
in order to obtain a trade-off between the accuracy of the
results and the computation time. Next, we present briefly
the stochastic ordering theory used to define our bounding
systems.

IV. STOCHASTIC ORDERING THEORY

We give some theorems and definitions about stochastic
orderings [8] used in this paper. We consider a discrete, and
countable state space A, endowed by the total order ≤ [8].
As an example, on the state space A = R, “≤ ” is the total
order. We consider two independent random variables X and
Y defined on A, with probability mass functions p and q (pi =
Prob(X = i), and qi = Prob(Y = i), for i = 1, 2, . . . , |A|).
The most known stochastic ordering is the strong stochastic
ordering, and it is denoted by ≤ st. It could be defined using
increasing functions as follows [8].

Definition 1: .

• generic definition: X ≤ st Y ⇐⇒ Ef(X) ≤ Ef(Y ),
for all non decreasing functions f : A → R+

whenever expectations exist.

• probability mass functions:

X ≤ st Y ⇔ ∀i, 1 ≤ i ≤ n,
n∑

k=i

pk ≤
n∑

k=i

qk. (1)

Notice that we use interchangeably X ≤ st Y and
p ≤ st q.

We can also compare stochastic processes. Let
{X(t), t≥0} and {Y (t), t≥0} be stochastic processes
defined on A.

Definition 2: We say that {X(t), t≥0} ≤ st

{Y (t), t≥0} , if X(t) ≤ st Y (t), ∀t≥0

When the processes are defined on different state spaces we
can compare them on a common state space using mapping
functions. Let {X(t), t≥0} (resp. {Y (t), t≥0}) defined on
A (resp. B), g (resp. h) be a many to one mapping from A
to S, (resp. B → S). Next, we compare the mapping of the
process {X(t), t ≥0} (resp. {Y (t), t ≥0}) by the mapping
function g (resp. h), which means g(X(t)) (resp. h(Y (t))), on
the common state space S.

The stochastic comparison of processes by mapping func-
tions is defined as follows [9]:

Definition 3: We say that {g(X(t)), t≥0} ≤ st

{h(Y (t)), t≥0} , if g(X(t)) ≤ st h(Y (t)), ∀t≥0

We can use the coupling method for the stochastic comparison
of the processes. For the ≤ st ordering, the coupling method
can be used for the stochastic comparison of Continuous Time
Markov Chains (CTMCs). As presented in [9], it remains us
to define two CTMCs: {X̂(t), t ≥ 0} (resp. {Ŷ (t), t ≥
0}) governed by the same infinitesimal generator matrix as
{X(t), t ≥ 0} (resp. {Y (t), t ≥ 0}), representing different
realizations of these processes with different initial conditions.
The following theorem establishes the ≤ st-comparison using
the coupling [9]:

Theorem 1:

{g(X(t)), t≥0} ≤ st {h(Y (t)), t≥0} (2)

if there exists the coupling {(X̂(t), Ŷ (t)), t≥0} such that:

g(X̂(0)) ≤ h(Ŷ (0))⇒ g(X̂(t)) ≤ h(Ŷ (t)), ∀t > 0 (3)

V. BOUNDING SYSTEMS

We propose to define different bounding systems which are
easier to solve. Different ways to simplify the exact system are
used. The first bounding systems are defined by reducing the
size of the bulk arrivals and so by aggregating the probability
distribution of bulk arrivals, in order to obtain aggregated
bounding bulk arrivals. So, these first bounding systems are
represented by a hysteresis system with aggregated bounding
bulk arrivals. The second aggregated bounding processes are
obtained by defining bounding processes with the same se-
quences of forward and reverse thresholds. Next, we describe
the proposed bounding models.

A. Hysteresis system with aggregated bounding arrival pro-
cess

We consider hysteresis systems equivalent to the exact
system with arrival process defined by a Poisson process with
the rate λ. The bulk (or batch) lengths follow an upper bound
probability distribution pu (resp. a lower bound probability
distribution pl) of the probability distribution p. The bounding
probability distributions of the bulk lengths are obtained by
aggregations, in order to reduce the size of p, with the
following relation:

p ≤ st p
u and pl ≤ st p.

If p is defined on a state space of size n (called also bins),
then pu (resp. pl) are defined on a state space of size m, such
that m << n. These bounding probability distributions can be
obtained through the approach and the algorithms developed
in [10]. Intuitively, pu (resp. pl) is obtained by removing
some states of p and adding their probability mass on higher
states (resp. on lower states). The distributions pu and pl

are computed to be the closest distributions with m states
according to an increasing reward function. The optimality
of computed bounding distributions, proved in [10] helps to
obtain tight bounds on the results. Let Xu(t) (resp. X l(t))
be the hysteresis system built with the bulk arrival probability
distribution pu (resp. pl). Next, we prove that these Markov
chains represent stochastic bounds for X(t).

1) Stochastic comparison proofs: We define the many to
one mapping function g : A → S, such that g(x) = x1,
where x1 ∈ S = {0, . . . , C}. And in the state space S, we
use the total order ≤ . We apply the stochastic ordering theory
presented before to derive the following theorem:

Theorem 2: We have the following relations:

1) g(X(0)) ≤ st g(Xu(0)) ⇒ g(X(t)) ≤ st

g(Xu(t)), ∀ t > 0.
2) g(X l(0)) ≤ st g(X(0)) ⇒ g(X l(t)) ≤ st

g(X(t)), ∀ t > 0.

Proof: We use theorem 1 based on the coupling of the
processes. We begin with the first relation of theorem 2, in
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order to establish that {Xu(t), t ≥ 0} is really an upper
bound. For the proof, we suppose that at time t, X(t) = x and
Xu(t) = y, and from the definition of the mapping function g,
g(Xu(t)) = y1, and g(X(t)) = x1. The proof is by induction,
so we suppose that the order is verified at time t (x1 ≤ y1),
and we prove that at time t + dt the order is still verified.
We denote by Xu(t + dt) = y′ and X(t + dt) = x′, and so
g(Xu(t+ dt)) = y′1, and g(X(t+ dt)) = x′1. We consider the
two kinds of events: arrivals and services.

• Arrivals: if we have an arrival of size k in X(t) such
that at time t+dt, x′1 = x1+k, then we can have also a
transition in Xu(t) from y to y′ such that y′1 = y1+ l,
and k ≤ l, as p ≤ st pu. So x′1 ≤ y′1, and the order
between the processes is still verified at time t+ dt.

• Services: if we have a service for Xu(t) such that
at time t + dt, y′1 = y1 − 1, then we can have also
a service in X(t) such that at time t + dt, we have
x′1 = x1 − 1, as the transition rates are the same in
the two systems. So, x′1 ≤ y′1, and the order between
the processes is still verified at time t+ dt.

For the lower bound {X l(t), t≥0}, the proof is similar. As
the bulk length probability distributions are such that pl ≤ st p,
and the service rates are the same, then the second relation of
theorem 2 is verified.

The second kinds of bounding models are obtained by re-
moving the notion of hysteresis in the system. Considering the
same sequence for forward and reverse threshold sequences,
these new models are easier to analyze and allow to derive
also bounds for performance measures of a cloud node.

B. Bounding systems with equal forward and backward se-
quence

Considering the same forward and reverse threshold vec-
tors, we derive upper and lower bounding models for the
threshold queueing system with hysteresis. For the upper
bound, we take the vector (F1, F2, . . . , FK−1) as a forward
and reverse thresholds. And, for the lower bound, we take
(R1, R2, .....RK−1) for the forward and the reverse thresholds.

The behavior of each of these systems are represented
by CTMCs defined on state space S = {0, . . . , C}. We
denote by Y (t) the CTMC associated to the upper bounding
model (the forward and the reverse thresholds are given by
(F1, F2, .....FK−1)). The evolution equation of this model is
given as follows:

x → min(C, x+ k), with rate λpk, ∀ k ∈ E (4)
→ max(0, x− 1),with rates: (5)

• iµ, if Fi−1 < x ≤ Fi, ∀i = 1 . . .K − 1 (6)
• Kµ, if FK−1 < x ≤ C (7)

where F0= 0.

In the same way, we define by Z(t) the CTMC which
represents the lower bound (with (R1, R2, .....RK−1) for the
forward and the reverse thresholds). In this case, the above
equations ((4)-(7)) are also available by changing the sequence
Fi, i=1...K−1, by the sequence Ri, i=1...K−1. We give in figures

3 and 4, the transition diagrams of upper bounding and lower
bounding models for three-servers.
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Fig. 3. State transition diagram for upper bounding model with three-servers.
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Fig. 4. State transition diagram for lower bounding model with three-servers.

Next, we will prove that Y (t) (resp. Z(t)) is a stochastic
upper bound (resp. lower bound) for X(t).

1) Stochastic comparison proofs: We have the following
theorem:

Theorem 3: If X(t), Y (t), and Z(t) represent the systems
defined previously, then we have:

1) g(X(0)) ≤ st Y (0)⇒ g(X(t)) ≤ st Y (t), ∀t > 0
2) Z(0) ≤ st g(X(0))⇒ Z(t) ≤ st g(X(t)), ∀t > 0

Proof: We begin by the first equation of theorem 3. For
the proof, we apply the theorem 1, in order to use the coupling
by the mapping function for the stochastic comparison. In our
case, we have X(t) defined on A, g a mapping function A→
S, Y (t) defined on S, and h is the identity function. The proof
is done by induction: we consider X(t) = x = (x1, x2) and
Y (t) = y, such that g(x) ≤ y and we prove that for any
event, at time t + dt, if X(t + dt) = x′ = (x′1, x

′
2), and

Y (t + dt) = y′, then g(x′) ≤ y′. In fact, for states x and y
such that g(x) ≤ y, we consider the two events for the proof
of the stochastic comparison by the mapping function g:

• Arrivals: if we have a transition from x to x′ such
that x′1 = x1 + k (for k > 0) then we are sure that
we can have also a transition from y to y′ such that
y′ = y + l (for l > 0, k ≤ l), because the arrival
processes are the same in the two systems. So, we
deduce that g(x′) ≤ y′.

• Services: if we have a transition from y to y′ such
that y′ = y − 1, then we are sure that we have also
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a transition from x to x′ such that g(x′) = x1 − 1,
because the rate for decreasing in Y (t) is lower than
in X(t) (as the threshold for deactivation is lower in
X(t) than in Y (t)). So, g(x′) ≤ y′.

Then, we deduce that for any events, we have: g(X(t +
dt)) ≤ Y (t + dt), and from theorem 1, we deduce that in
theorem 3, equation 1 is verified. For the second equation in
theorem 3, the proof is similar, and we deduce easily that Z(t)
is a lower bound.

Another simplification of these bounding models consists
to consider aggregation on batch arrivals distribution for Y (t)
and Z(t). We denote by Y u(t) (resp. Zl(t)) the Markov chain
with batch arrival distribution pu (resp. pl) (see Subsection
V-A). In the sequel we give the following theorem.

Theorem 4: We have the following relations:

• Y (0) ≤ st Y u(0)⇒ Y (t) ≤ st Y u(t), ∀ t > 0.

• Zl(0) ≤ st Z(0)⇒ Zl(t) ≤ st Z(t), ∀ t > 0.

The proof is similar to Theorem 2. Indeed, Y u(t) is
obtained by replacing the probability distribution of batch
lengths p by pu in Y (t), and p ≤ st pu. In the same way,
Zl(t) is obtained by replacing p by pl in Z(t), and pl ≤ st p.

From Theorem 3 and Theorem 4, we deduce that Y u(t)
(resp. Zl(t)) represents an upper bound (resp. lower bound)
of X(t).

The relevance of the definition of bounding systems is
to generate bounds for performance measures as expected
buffer length, expected departures, and blocking probabilities.
Next, we will present some numerical results of performance
measures.

VI. NUMERICAL EXAMPLES

In this section, we present some numerical examples which
illustrate the relevance as well as the reduced complexity of
the bounding models presented in the paper. We note that the
bounding systems developed before represent bounds on the
number of jobs in the system. These bounds provide a coverage
on performance measures defined as an increasing function
of the number of jobs in the system such as expected buffer
length, expected departures and blocking probabilities. We also
present the execution time (in seconds) needed to compute
the performance metrics of the models. We note that to
compute the steady state probability distribution vector of the
considered models, we use the methodology proposed by Lui
and Golubchik in [7] based on the stochastic complementation
denoted here by “SCA” (Stochastic Complement Analysis).
We note that this approach is proven to be less complex than
the commonly used solution techniques [11].

Considering a threshold-based system with hysteresis, our
goal through these examples consists to show the interest
and the usefulness that may represent the stochastic bounding
models proposed in the paper to obtain accurate results and
guarantees on performance measures. We present below three
examples through which we propose to vary some input
parameters as buffer size, degree of virtualization (number

of servers), and utilization rate of the system. We study here
the quality of results and the computational times in order to
offer to the user a range of models, which are “less complex”
and very relevant for network dimensioning. For the three
examples, we give the performance measures for these models:

• Hysteresis model with exact batch-arrival distribution
(X(t))

• Hysteresis model with stochastic lower bound of
batch-arrival distribution (X l(t))

• Hysteresis model with stochastic upper bound of
batch-arrival distribution (Xu(t))

• Upper bounding model with exact batch-arrival distri-
bution (Y (t))

• Upper bounding model with stochastic upper bound
of batch-arrival distribution (Y u(t))

• Lower bounding model with exact batch-arrival distri-
bution (Z(t))

• Lower bounding model with stochastic lower bound
of batch-arrival distribution (Zl(t))

A. Some QoS parameters versus buffer size

As a first example, we consider a threshold-based queue
with hysteresis and batch-arrival, such that: the number
of servers is K = 10, the service rate is set to 100,
the distribution of the batch arrivals is randomly gener-
ated on a support {1, 2, 3, . . . , 500} and the arrival rate
is taken equal to 1. We propose to vary the buffer size
from C=1000 to C=6000 and observe some performance
measures for the studied models. According to the buffer
length, the forward and the reverse threshold vectors are
taken as follows: for C=C1=1000, the threshold vectors are
F = [90, 140, 280, 400, 610, 690, 730, 840, 910] and R =
[30, 90, 190, 270, 410, 510, 620, 700, 800], for C = Ci =
i×1000, the threshold vectors are Fi = i×F and Ri = i×R.

Depending on the values of the buffer size, the figures
5, 6 and 7 (resp. figures 8, 9 and 10) illustrate the expected
buffer length, the expected departures and the blocking prob-
abilities for reduction of batch arrival distribution bins=10
(resp. bins=50). For bins=50, we illustrate in Figure 11 the
computation times in seconds needed to solve the different
models.
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Fig. 5. Expected buffer lengths versus buffer size, for bins = 10.

Through these figures, we remark that the bounding sys-
tems define a good coverage of the exact result (hysteresis
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Fig. 6. Expected departures versus buffer size, for bins = 10.
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Fig. 7. Blocking probabilities versus buffer size, for bins = 10.
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Fig. 8. Expected buffer lengths versus buffer size, for bins = 50.
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Fig. 9. Expected departures versus buffer size, for bins = 50.

model with exact batch-arrivals) and the accuracy of these
bounds are very improved when we increase the number of
bins (bins = 50). Regarding the computation times, we ob-
serve that the upper and the lower bounding models (Y (t) and
Z(t)) with exact arrival distribution allow to reduce slightly the
computation times, and the bounding models with a reduction
in the size of batch-arrival distribution (Xu(t), X l(t), Y u(t)
and Zl(t)) allow for their part to reduce significantly the
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Fig. 10. Blocking probabilities versus buffer size, for bins = 50.
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Fig. 11. Computation times (in second) versus buffer size.

computational time. Indeed, even if a reduction of the batch-
arrival distribution may seem important (from 500 states to
only 10 states or 50 states), the results on performance metrics
are, however, very relevant and close to the exact results with
very low computational times. We remark that for bins = 50,
Xu(t) and X l(t) provide the most accurate bounds.

B. Some QoS parameters versus number of servers

For the second example, we propose to vary the degree of
virtualization of the servers in the threshold-based queue with
hysteresis and observe the behavior of some performance mea-
sures. So, we consider a threshold-based queue with hysteresis
and batch-arrival such that: the service rate is set to 100, the
distribution of the batch arrivals is randomly generated on the
support {1, 2, 3, . . . , 500}, the arrival rate is taken equal to 1,
and the buffer size is set to C = 2000.

We are interested here in computing some performance
measures by varying the number of servers from K = 5
to K = 200. For the different degree of virtualization
considered, we use the following equation to define respec-
tively the forward and the reverse threshold vectors: F =
(⌊CK ⌋, 2 × ⌊

C
K ⌋, . . . , (K − 1) × ⌊CK ⌋) and Ri = Fi − ⌊ C

2K ⌋,
for i = 1, . . . ,K − 1.

Thus, depending on the degree of virtualization, the figures
12, 13 and 14 illustrate the expected buffer length, the expected
departures and the blocking probabilities for the studied mod-
els. The reduction considered here is bins = 50. The Figure
15 presents the computation times in seconds for the different
models.

From these curves, we see that the bounding results frame
the exact results and are very accurate. We observe that
the performance measures obtained by the lower bounding
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model with exact batch arrival distribution (Z(t)) are the
closest results, but the other models remain very relevant.
The times needed to make the computations for the models
with smaller sizes of batch length arrival distribution are

very short compared to the models with the original arrival
distribution. Thus, from these observations, we can say that
in order to accelerate the computation times and avoid a
cumbersome resolution, the use of stochastic bounds on batch
arrival distribution proposed here can be very interesting and
represent a good trade-off between accuracy of the results and
the computational complexity.

C. Performance measures versus utilization rate and number
of servers

We consider here two cases where the number of servers,
K, is equal to 10 and 50. We suppose that the buffer
size is C = 1500, for K = 10, the threshold vectors
are F = (100, 200, 300, 400, 500, 600, 700, 800, 900) and
R = (80, 180, 280, 380, 480, 580, 680, 780, 880) and, for
K = 50, the threshold vectors are F = (20, 40, 60, . . . , 980)
and R = (5, 25, 45, . . . , 965). For all values of K, the service
rate µ is set to 1. The distribution of the batch length arrivals
is randomly generated with the support {1, 2, . . . , 500} and
we propose to vary the arrival rate λ. So, we distinguish a
lightly loaded system with λ = 0.2 for K = 10 and λ = 0.5
for K = 50 and a highly loaded system with λ = 2 for
K = 10, and λ = 6 for K = 50. We note that the size of
reduction considered for stochastic bounding distributions are
respectively bins = 10 and bins = 50.

We depict in tables I, II, III and IV the expected buffer
length (denoted E[Q]) and the expected departures (denoted
E[D]) computed for different studied models and for two
degree of virtualization of the server (K = 10 and K = 50)
and utilization rate system (denoted “U”), U ≃ 0.20 and
U ≃ 0.96. We present also the computation times for the
different models. We propose here to compare the resolution
method developed by Lui and Golubchik in [7] and used until
now for our numerical resolution with a well known approach
which consists to use the iterative power method on the matrix
of the model as solution technique (see [11]) with precision
ϵ = 10−10. We denote this solution technique by PM (Power
Method).

E[Q] E[D] time time
“PM” “SCA”

Exact 28.62 9653.2 107.89 49.32
St- bins=10 25.25 8256.54 7.15 4.44

Hys. L.B. bins=50 28.07 9416.28 12.49 7.461
model St- bins=10 32.28 11190.6 7.15 3.19

U.B. bins=50 29.16 9890.27 12.51 7.07
U.B. Exact 35.77 10007 98.13 32.00

model St- bins=10 39.67 1159.4 3.64 2.44
U.B. bins=50 36.40 10254.3 10.79 3.27

L.B. Exact 27.96 9620.31 75.22 33.72
model St- bins=10 24.78 8235.69 3.3102 2.55

L.B. bins=50 27.44 9385.26 8.57 3.59

TABLE I. SOME QOS PARAMETERS FOR K = 10 AND U ≃ 0.20.

From these tables, the observations made previously are
also seen in this example. So, we show clearly that the results
provided after using the stochastic bounds on the batch-arrival
distribution, are very accurate and gives a good coverage of
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E[Q] E[D] time time
“PM” “SCA”

Exact 411.25 278610 219.11 31.77
St- bins=10 363.11 230805 18.69 4.78

Hys. L.B. bins=50 403.43 270649 34.80 7.39
model St- bins=10 459.56 329040 17.95 4.16

U.B. bins=50 419.27 286798 41.54 6.81
U.B. Exact 455.63 299189 140.27 21.97

model St- bins=10 503.34 350453 14.55 3.74
U.B. bins=50 463.60 307568 20.89 4.39

L.B. Exact 407.07 276685 148.20 27.45
model St- bins=10 358.92 229006 16.15 3.88

L.B. bins=50 399.23 268734 24.03 5.10

TABLE II. SOME QOS PARAMETERS FOR K = 10 AND U ≃ 0.96.

E[Q] E[D] time time
“PM” “SCA”

Exact 19.95 23060.4 170.54 106.69
St- bins=10 17.94 19821.4 6.46 5.31

Hys. L.B. bins=50 19.63 22511.2 18.64 17.12
model St- bins=10 21.99 26585.2 6.69 5.01

U.B. bins=50 20.29 23610.6 19.17 17.38
U.B. Exact 22.33 23354.8 114.63 74.59

model St- bins=10 24.53 26929.1 5.45 5.32
U.B. bins=50 22.69 23913.5 13.85 11.51

L.B. Exact 19.90 23053.6 108.85 68.25
model St- bins=10 17.91 19818.1 3.99 3.55

L.B. bins=50 19.57 22504.8 12.01 9.18

TABLE III. SOME QOS PARAMETERS FOR K = 50 AND U ≃ 0.2.

E[Q] E[D] time time
“PM” “SCA”

Exact 275.16 652925 247.96 162.96
St- bins=10 247.21 545394 9.01 7.77

Hys. L.B. bins=50 270.63 634823 26.19 19.03
model St- bins=10 303.18 769411 9.27 4.24

U.B. bins=50 279.81 671516 27.81 18.69
U. B. Exact 288.93 673130 151.78 112.07
model St- bins=10 317.07 791503 6.33 5.31

U.B. bins=50 293.60 692051 16.36 16.01
L. B. Exact 274.81 652407 152.39 100.44
model St- bins=10 246.89 544972 5.65 4.89

L.B. bins=50 270.27 634317 17.04 16.98

TABLE IV. SOME QOS PARAMETERS FOR K = 50 AND U ≃ 0.96.

the exact results with considerably reduced computation times.
Moreover, for computation times, we can observe easily that
the time needed to compute the bounds even for bins = 50
are significantly smaller than those used to obtain exact results
(PM and SCA methods).

To summarize, when we have a network dimensioning
problem with QoS constraints, we propose first to build upper
and lower bounding models with stochastic bounds on the
bulk-arrival distribution as they represent the smallest models

in terms of size of the state space and the fastest in term of
resolution time. If the computed performance bounds do not
verify the QoS constraints (even when we increase the number
of bins), we can subsequently use the hysteresis models with
stochastic bounds on the bulk-arrival distribution. Because
these models can get closer to the exact values when we
increase the number of bins.

VII. CONCLUSION

We propose in this paper a queue-dependent multiserver
VMs with hysteresis in order to model the behavior of a
data center in a cloud system. The relevance of this model
is to represent the dynamicity of the resource according to
the queue occupation, and with the hysteresis to reduce the
cost due to activation/deactivation of the VMs. However, this
system could be difficult to analyze when the number of VMs
increases, so we propose to use bounding techniques in order
to derive bounds for the performance measures. Through this
paper we show clearly the accuracy and the relevance of the
proposed stochastic bounding models. As a future work, we
expect to investigate a more general system by considering
heterogeneous servers (VMs) and defining optimal thresholds
vectors in order to optimize the performance of cloud systems.
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