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Abstract. Exact analysis of queueing networks under real traffic his-
tograms becomes quickly intractable due to the state explosion. In this
paper, we propose to apply the stochastic comparison method to derive
performance measure bounds under histogram-based traffics. We apply
an algorithm based on dynamic programming to derive bounding traf-
fic histograms on reduced state spaces. We indeed obtain easier bound-
ing stochastic processes providing stochastic upper and lower bounds on
buffer occupancy histograms (queue length distributions) for finite queue
models. We evaluate the proposed method under real traffic traces, and
we compare the results with those obtained by an approximative method.
Numerical results illustrate that the proposed method provides more ac-
curate results with a tradeoff between computation time and accuracy.
Moreover, the derived performance bounds are very relevant in network
dimensioning.

Keywords: Network QoS, Histogram-based traffic models, Stochastic
Comparison.

1 Introduction

Queueing-based models are very efficient modeling and evaluation tools for a
variety of practical situations in telecommunication and computer network sys-
tems. The stochastic behavior prediction of queues gives a theoretical insight
into the dynamics of these shared resources and how they can be designed to
provide better utilization. The probability theory in queueing analysis plays a
central role as it provides mathematical equations for performance measure com-
putations such as queue length, response time, and server utilization. Most of
the queueing theory is based on exponential assumption. However, this assump-
tion can be applied only for certain applications as in telephone networks. In the
Internet, several traffic traces are available, and are used to be approximated
by a theoretical probability distribution (for example, the phase distribution).
Unfortunately, some problems arise: the accuracy of the model compared to the
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traffic, and the difficulty to exploit the model when the number of parameters
is high. So most of the time, we must limit the number of parameters in the
detriment of precision. Moreover, the exact analysis of the queueing network
with the real traffic traces is in general impossible, as their sizes are too large to
be used directly.

There has been a several amount of works on the Histogram-based approach
for performance models. In the area of network calculus, the histogram model was
introduced by Skelly et al [11] to model the video sources, to predict buffer occu-
pancy distributions and cell loss rates for multiplexed streams. It was also applied
by Kweon and Shin [8] to propose an implementation of statistical real-time com-
munication in ATM networks using a modified version of the Traffic Controlled
Rate-Monotonic Priority Scheduling (TCRM). These works used an analysis
method based on a M/D/1/N queueing system. More recently, Hernández and
al.[5–7] have proposed a new performance analysis to obtain buffer occupancy
histograms. This new stochastic process called HBSP (Histogram Based Stochas-
tic Process) works directly with histograms using a set of specific operators. The
model is based on a basic histogram model (HD) as an input traffic which is
supplied through finite capacity buffers with deterministic (D) service time dis-
tribution under First Come First Served (FCFS) policy. Considering a single
node, the analysis method solves the HD/D/1/K queueing system, by reducing
the state space of traffic trace into n subintervals (classes or bins) in order to
avoid working with huge state spaces.

Another approach based on reducing the initial histogram in n subintervals
has been presented by Tancrez and al.[14] in a slightly different context. The
problem consists in building an upper (lower) bounding discrete distribution of
a continuous distribution which models the service duration in a production line.
They divide the support into n equal subintervals. Each of these subintervals of
the continuous distribution is associated with one single point of the discrete one.
This point is the upper limit (lower limit) of the interval and the probability
mass of the sub-interval is associated to that point. As the production lines
considered can be modeled by a decision free stochastic Petri-net, it is known
since the seminal work of Baccelli et al. [3] that bounding the distribution of
service times in the queues provides a bound on the end to end delay.

In this paper, we apply the stochastic bounding method for network perfor-
mance analysis under histogram-based traffic. The goal is to generate bounding
histograms with smaller sizes in order to make possible the analysis of the queue-
ing network. We use the strong stochastic ordering (denoted ≤st) [9]. We propose
to use algorithmic techniques developed in [2] to obtain optimal lower and upper
stochastic bounds of the buffer occupancy histogram. These algorithms allow to
control the size of the model and compute the most accurate bound with re-
spect to a given reward function. The bounding histograms are then used in the
state evolution equations to derive bounds for performance measures both for
a single queue and a tandem queueing network. To show the relevance of our
work, we analyze systems with real traffic traces. We compare our bounds with
the results under exact traffic traces and those obtained from the HBSP ap-
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proximation method. The proposed method provides the most accurate results
for blocking probability and mean buffer occupancy. Another important point is
that HBSP only provides approximative results which are neither conservative
nor optimistic. Our bounding approach gives, at the same time, upper and lower
performance measures which could be used to check QoS constraints for network
dimensioning.

This paper is organized as follows: in Section 2, we first describe the his-
togram traffic models, and the state evolution equations of the queuing model
under study. Then, we explain the Histogram Buffer Stochastic Process (HBSP)
method proposed by Hernandez and al. In Section 3, we introduce our approach
based on the stochastic bounds to derive performance measure bounds. Finally
in Section 4, we give numerical results based on real traffic measurements in
order to study the accuracy of the bounds, compared to the exact results and
those obtained by HBSP algorithm. These results are obtained for a single node
analysis and also for a tandem queueing network.

2 Queueing model description

2.1 Histogram traffic model

Here a histogram describe a discrete distribution and its graphical representa-
tion. Figure 1 shows a plot of MAWI traffic trace [12] corresponding to a 1-hour
trace of IP traffic of a 150 Mb/s transpacific line (samplepoint-F) for the 9th of
January 2007 between 12:00 and 13:00. This traffic trace has an average rate of
109 Mb/s. Using a sampling period of T = 40 ms (25 samples per second), the
resulting traffic trace has 90,000 frames (periods) and an average rate of 4.37Mb
per frame, the corresponding histogram is given in Figure 2.
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Fig. 1. MAWI traffic trace Fig. 2. MAWI arrival load histogram

The arrival workload is characterized with the number of transmission units
produced by the corresponding traffic source during a pre-established time pe-
riod T = 40ms. Let A(k) be a discrete random variable representing the amount
of traffic entering to the system during the kth sampling interval (slot). We as-
sume that the traffic is stationary and independently and identically distributed
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(iid). So, all random variables A(k) follow the same distribution A characterized
by a couple (A, p(A)), where A is the support and p(A) is the corresponding
probabilities.

2.2 State evolution equations

We denote by Q(k) and D(k) respectively random variables corresponding to
buffer length and the output traffic (departure) during the kth slot (Figure 3).

Fig. 3. Input and output parameters of a queueing model

Let B be the buffer size and S be the transmission (service) rate. We assume
that the following sequence of events during a slot: acceptation of arrivals and
then service. The queue or buffer length Q(k) can be expressed with the following
recursive formula:

Q(k) = min(B, (Q(k − 1) +A(k)− S)+), k ∈ N. (1)

where operator (X)+ = max(X, 0). As we assume a Tail Drop policy, the depar-
ture distribution is defined as follows:

D(k) = min(S, Q(k − 1)) +A(k)), k ∈ N. (2)

The transmission channel utilization is defined as ρ = E[A]
S , where E[A] is

the average traffic. Equation 1 defines a Markov chain in discrete time (DTMC)
if the arrivals (A(k)) are stationary and iid. As this chain is finite, it suffices to
verify that the arrival process makes the chain irreducible and aperiodic thus
ergodic. We give below some sufficient conditions to ensure both properties.

Proposition 1. If the following conditions are satisfied, then the DTMC is er-
godic:

1. there exists i < S in the support of A such that p(i) > 0,
2. there exists j > S in the support of A such that p(j) > 0,
3. j = S + 1 or i = S − 1.
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Proof. The first property implies that starting from state 0 we go back with a
probability greater than or equal to p(i). Indeed, if it arrives i customers, the
buffer length before the services is i, as i < S, we return to state 0 after the end
of service. So state 0 is aperiodic. In addition, the first property implies that the
buffer length can be reduced to 0 by a sequence of transitions from one arrival of
a batch of size i < S. So 0 is reachable from any states of the chain. Condition 2
implies that we can reach state B from state 0. Finally, the last condition implies
that we can reach all states from 0 or B by jumps with amplitude 1 that are
possible under assumptions 1 and 2.

We suppose in the following that the Markov chain is ergodic.
Let X (resp. Y ) be a discrete random variable taking values in a set GX

(resp. GY ) of size lX > 1 (resp. lY > 1).

Proposition 2. The computation of the convolution of the distributions of two
independent random variables generates a distribution with at most lX×lY states.
This computation requires O(lX × lY ) operation (+) using a naive approach and
O((lX + lY )log(lX + lY )) for a Fast Fourier Transform (FFT) [10].

The computation complexity depends on the size of the distributions and
thus on the number of classes considered.

2.3 Histogram reduction: HBSP method

The Histogram Buffer Stochastic Process (HBSP) model is proposed by Hernández
and al. [5–7]. Since working with a huge distribution can be cumbersome, the
method suggests to reduce this size using n classes or bins. Consequently, if we
have a range of I = [0, Nmax], then the interval size will be lA = Nmax/n. Using
these intervals we define a binned process {A(t)} that has a reduced state space
I ′ = {0, . . . (n − 1)}. A value a of I is mapped to i in I ′ such that i = b a

lA
c,

which is also denoted by i = classA(a). Inversely, a value i ∈ I ′ corresponds to
the midpoint of interval i: a = lA . i+ lA/2, a ∈ I.

The traffic is assumed to be stationary, A = A(t), ∀t, thus the time depen-
dence of A(t) is suppressed and replaced by a discrete random variable A which
is defined by a couple of attributes (A, p(A)). Each attribute is a vector of size
n, first vector is interval midpoints while the second gives the corresponding
probabilities.

A = (A, p(A))

{
A = {ai : i = 0 . . . n− 1},

p(A) = [pA(i) : i = 0 . . . n− 1].
The stochastic process of the evolution of HBSP model is based on the fol-

lowing recurrence relation:

Q(k) = Φb̂
Ŝ

(Q(k − 1)⊗A). (3)

where, Ŝ = classA(S) (resp. b̂ = classA(B)), ⊗ is the convolution operator of
distributions. Q(k) denotes here the corresponding distribution and operator Φ
limits buffer lengths so that they can not become negative and cannot overflow
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the corresponding class of buffer length. This operator is defined as follows:

Φb
a(x) =

 0 , for x < a,
x , for a ≤ x ≤ b+ a,
b , for x ≥ b+ a.

(4)

Example 1. For the MAWI traffic trace with n = 10, the HBSP traffic is defined
by A = (A, p(A)) with A = {0.3933, 1.1799, 1.9666, 2.7532, 3.5398, 4.3265,
5.1131, 5.8997, 6.6864, 7.4730}Mb and p(A) = [0.0003, 0.0002, 0.0021, 0.0641,
0.2663, 0.3228, 0.2345, 0.0980, 0.0110, 0.0005] (Figure 4).
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Fig. 4. Arrival workload histogram of MAWI traffic using 10 classes.

3 Bounding approach

We first present briefly the stochastic comparison method and we then present
the proposed bounding algorithm for the reduction of the number of classes
for a histogram. The application of this bounding approach for the network
performance analysis will be given in the next section.

3.1 Stochastic comparison

We refer to Stoyan’s book ([9]) for theoretical issues of the stochastic comparison
method. We consider state space G = {1, 2, . . . , n} endowed with a total order
denoted as ≤. Let X and Y be two discrete random variables taking values
on G, with cumulative probability distributions FX and FY , and probability
mass functions d2 and d1 (d2(i) = Prob(X = i), and d1(i) = Prob(Y = i),
for i = 1, 2, . . . , n). We give different manners to define the strong stochastic
ordering ≤st for this case:

Definition 1. – generic definition: X ≤st Y ⇐⇒ Ef(X) ≤ Ef(Y ),
for all non decreasing functions f : G → R+ whenever expectations exist.

– cumulative probability distributions:

X ≤st Y ⇔ FX(a) ≥ FY (a), ∀a ∈ G.
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– probability mass functions

X ≤st Y ⇔ ∀i, 1 ≤ i ≤ n,
n∑

k=i

d2(k) ≤
n∑

k=i

d1(k) (5)

Notice that we use interchangeably X ≤st Y and d2 ≤st d1.

Example 2. We consider G = {1, 2, . . . , 7}, and two discrete random variables
with d2 = [0.1, 0.2, 0.1, 0.2, 0.05, 0.1, 0.25], and d1 = [0, 0.25, 0.05,
0.1, 0.15, 0.15, 0.3]. We can easily verify that d2 ≤st d1: the probability mass
of d1 is concentrated to higher states such as the probability cumulative distri-
bution of d1 is always below the cumulative distribution of d2 (Figure. 5).

Fig. 5. d2 ≤st d1: Their pmf (left) and their cumulative distribution functions (right).

3.2 Bounding histogram reduction

In order to reduce the computation complexity of evolution equations, we pro-
pose to apply the bounding approach to diminish the number of classes. The
main advantage of this approach is the ability of computing bounds rather than
approximations. Unlike approximation, the bounds allow us to check if QoS are
satisfied or not. For a given distribution d , defined as a histogram with N classes,
we build two bounding distribution d1 and d2 which are defined as histograms
with n < N classes. Moreover, d1 and d2 are constructed to be the closest with
respect to a given reward function. Two algorithms are given in [2] to construct
such bounds. More formally, for a given distribution d defined on H (|H| = N),
we compute bounding distributions d1 and d2 defined respectively on Hu, Hl

(|Hu| = n, |Hl| = n) such that:

1. d2 ≤st d ≤st d1,
2.
∑

i∈H r(i)d(i)−∑i∈Hl r(i)d2(i) is minimal among the set of distributions
on n states that are stochastically lower than d ,

3.
∑

i∈Hu r(i)d1(i)−∑i∈H r(i)d(i) is minimal among the set of distributions
on n states that are stochastically upper than d .

d1 and d2 will be denoted as the optimal bounding distributions on n states
according to reward r . We now present the bounding algorithm that will be used
in this paper.
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Optimal Algorithm based on Dynamic Programming We will transform
our problem dealing with a discrete distribution into a graph theory problem.
First, we consider the weighted graph G = (V, E) such that:

– V is the set of vertices such that V = H ∪ {EndState} where EndState is a
new state larger than all the states in H.

– E is the set of arcs such that (u, v) ∈ E if and only if u < v or if v = EndState
and u ∈ H. The weight of arc e = (u, v), denoted by w(e), and it is defined

as follows: w(e) =

{∑
j∈H:u<j<v d(j)(r(j)− r(u)) if v ∈ H,∑
j∈H:u<j d(j)(r(j)− r(u)) otherwise.

where MinState denotes the minimal state of H. A distribution is associated
with a path. For the remaining, we focus on certain paths P provided with
distribution dP from state MinState to state EndState in graph G.

In fact, computing dP is equivalent to compute a shortest path in G from
state MinState to state EndState with n arcs. Such an algorithm based on dy-
namic programming with complexity O(N2 n) is given in [4].

Example 3. LetA = (A, p(A)) be a discrete distribution with A = {0, 2, 3, 5, 7}
and p(A) = [0.05, 0.3, 0.15, 0.2, 0.3]. We aim to reduce the state space to n = 3
states and the reward function r is defined as follows: ∀ ai ∈ A, r(ai) = ai. The
reward of the initial distribution, R[A] =

∑
ai∈A r(ai) pA(i) = 4.15. The com-

putation of the optimal upper bound (A) corresponds to explore all 3-hops paths
from EndState = 7 such that R[A] − R[A] is minimal (see Figure 6). This can
be done by applying the algorithm presented in [4]. The optimal upper bound
is A = (A, p(A)) with A = {2, 5, 7}, p(A) = [0.35, 0.35, 0.3] and R[A] = 4.55.

7

32 5

0 0 2 20 3

5.2 4.85 4.65 5.35 4.55 4.6R[A] =

Fig. 6. Optimal upper bound histogram for n = 3 classes.

3.3 Performance measure bounds

In this section, we prove that performance measures of the single node with
bounding histograms provide bounds for exact performance measures. We com-
pare the buffer length under the exact traffic histogram with that obtained under
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the bounding traffic histogram. The buffer length at slot k (Q(k)) under an in-
put traffic A(k) is given by Equation 1. Similarly, the buffer length of the same
system under input arrival Ã(k), denoted by Q̃(k) is given as

Q̃(k) = min(B, (Q̃(k − 1) + Ã(k)− S)+), k ∈ N.

We have the following bounds, if the input arrivals are comparable in the
sense of the ≤st order.

Proposition 3. If A(k) ≤st Ã(k),∀k ≥ 0, then Q(k) ≤st Q̃(k),∀k ≥ 0.

Proof. The proof is by induction: we suppose that Q(k) ≤st Q̃(k). We apply
theorem 4.3.9 of Stoyan. As the function min is an increasing function, and
A(k) ≤st Ã(k), then we can deduce that Q(k + 1) ≤st Q̃(k + 1).

Similarly, it follows from Equation 2 that we have bounds on the departure
processes.

Proposition 4. If A(k) ≤st Ã(k),∀k ≥ 0, then D(k) ≤st D̃(k),∀k ≥ 0.

We can now give the main theorem, by assuming that input arrivals Ã(k) are
bounds built as explained in subsection 3.2. We give here only the upper bound-
ing case and the lower bounds can be similarly obtained.

Theorem 1. Let A (resp. Ã be the stationary exact (resp. upper bounding)
input histogram, and Q, D (resp. Q̃, D̃) be the stationary buffer length and the
departure processes under the exact A, (resp. upper bounding Ã) input arrival,
then we have:

Q ≤st Q̃ and D ≤st D̃.

Proof. By construction A ≤st Ã, and it follows from the above propositions that
we have comparisons for all k, thus also for stationary processes when k → ∞.
Remark that by construction Q and D exist (due to the ergodicity assumption).

In the case when we consider a node in a tandem network, we have the same
evolution equations as in the single node case, but the arrivals to a node are
either external arrivals or the arrivals from the other nodes. By construction
of histograms, we have bounding histograms for external arrivals. The internal
arrivals are indeed the departure histograms of other nodes which are bounds.
Therefore, we can also derive bounds for a node in a tandem network.

In order to compute the steady state distribution, we need an algorithm
with a proved convergence test. Note that computing the difference between two
successive distribution as [7] is not a correct test for convergence (see Stewart’s
book [13]). We propose the following algorithm based on the computation on a
stochastic envelope QL and QU to prove the convergence.
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Algorithm 1 State evolution algorithm

1: QU (0) = δB , (Dirac at state B).
2: QL(0) = δ0, (Dirac at state 0).
3: k = 0.
4: repeat
5: QU (k + 1) = f(QU (k)) = min(B, (QU (k) +A− S)+).
6: QL(k + 1) = f(QL(k)) = min(B, (QL(k) +A− S)+).
7: until ||QU (k + 1)−QL(k + 1)||∞ < ε.

Theorem 2. Assume that the chain is ergodic and the steady state is π.
We have

QL(k) ≤st Q
L(k + 1) ≤st π ≤st Q

U (k + 1) ≤st Q
U (k).

Furthermore, the limit of QL(k) and QU (k) is π.

Proof. Remember that, for any non decreasing function f if X ≤st Y then,
f(X) ≤st f(Y ) [9]. Note that δ0 ≤st X is true for any distribution X defined on
{0..B}. Therefore, QL(0) ≤st Q

L(1) and f(QL(0)) ≤st f(QL(1)) because f is not
deceasing. Thus QL(1) ≤st Q

L(2). By induction, we have QL(k) ≤st Q
L(k+ 1).

The proof for QU (k) is similar, noting that X ≤st δB is true for any X.
As QL(k) ≤st δB the sequence is bounded and increasing. Therefore, the limit

exists. Similarly, the sequence of QU (k) has a limit. Finally, by the ergodicity of
the chain, both limits are equal and the iteration of QL, QU converges. Checking
the difference between QL and QU provides a proved test of convergence.

4 Real traffic experiments

We compute the performance measures of interest under real traffic traces by
applying three methods: exact computation, HBSP method and our method.
We are interested in blocking probability, buffer occupancy histogram and mean
buffer occupancy. We first, consider a single finite buffer case and then study
a network of nodes. For all the experiments, we suppose that the stationarity
is reached according to Algorithm 1 for ε = 10−6, reward function is defined
by r(ai) = ai, ∀ ai ∈ A. Real traffics are generally defined with large number
of classes N . In order to accelerate the computation time of our bounds, we
propose to reduce the initial size to n classes in two steps. First, we apply
Tancrez’s approach [14] to obtain bounds on N ′ (n < N ′ < N) states. In the
following experiments we takeN ′=4000. In the second step, we apply our method
to have bounding histograms on n states. The parameters considered in these
experiments are taken from [7] to compare results.

4.1 Single node

We first consider the single node under the MAWI traffic traces (Figure 1). We
want to analyze the influence of the number of classes on the accuracy of the
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results. We set the mean transmission rate to S = 110 Mb/s and the buffer size
to B = 1 Mb. We compute performance measures (Figure 7) for different number
of bins (varying from 10 to 200). In each figure, we give the results computed
by different methods: 1) exact result, 2) HBSP method, 3) Lower bound and 4)
Upper bound. Obviously, when the number of bins increases the results become
more accurate. But we must notice that the results provided by our bounds are
very close to the exact ones.
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Fig. 7. Number of classes vs Accuracy: QoS parameters using MAWI traffic trace

We can remark that for small values of bins, HBSP method gives worse
results. Moreover, we see clearly from Figure 7.b that HBSP method does not
provide bounds.
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Fig. 8. Cumulative probability (cdf) of buffer occupancy under MAWI traffic trace

In Figure 8 we illustrate the cumulative probability distribution of buffer oc-
cupancy by taking number of bins equal to 20 or 100. Again, we see the HBSP
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method is not a bound and it does not provide a good approximation for small
values of bins (bins=20). For bins equal to 100 all methods provide better re-
sults and our bounds are the most accurate ones. To get an idea of the execution
times of the considered methods, we give the times for number of bins equal to
100. We find that the exact computations are obtained in 1897 seconds (s), the
HBSP method in 0.007 s, the lower and upper bounds are respectively obtained
in 0.35 s and 0.33 s. So, we remark that the HBSP method is the fastest one,
but our bounds remain faster than the exact computation.

The second experiment is based on the CAIDA OC-48 traffic trace [1] col-
lected in both directions of an OC48 link at the AMES Internet Exchange (AIX)
on the 24th of April, 2003. The collected trace is one hour long with an average
rate of 92Mb/s. For our experiment, we take 5-minutes of packet header trace.
Using a sampling period of T = 10 ms (100 samples per second), the resulting
traffic trace has 30,000 frames and E[A] = 1.2885 105 bits. We consider the rela-
tionship between buffer size and blocking probability (resp. mean buffer length)
for bounding histograms, HBSP model and the exact result. The performance
indices are calculated by varying the buffer size from 5. 103 bits to 105 bits.
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Fig. 9. QoS parameters using CAIDA OC-48 traffic trace, bins=10
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Fig. 10. QoS parameters using CAIDA OC-48 traffic trace, bins=100

In Figure 9, we present the results with bins equal to 10 while Figure 10
presents the results with a number of bins equal to 100. When a number of bins
equal to 10, the results obtained by HBSP method for blocking probability and
mean buffer occupancy for small buffer sizes are not accurate. However, we see
that the bounds are closer to the exact values. When the number of bins increases
the accuracy of the HBSP method is improved and the bounds becomes very
tight.
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(a) Exact vs. approximate and bounding results

(b) Exact vs. bounding results (c) Exact vs. HBSP results

Fig. 11. Blocking probability using CAIDA OC-48 traffic trace

In Figure 11, we give 3D representations to study the impact of the buffer size
and the number of bins on blocking probabilities. We see from Figure 11.a that
for small number of classes the HBSP method does not converge when buffer
size is approximately less than 3 .103 and gives less accurate results elsewhere.
However, our bounds let us to provide fairly good coverage on the exact results.
We notice also that when the number of classes increases, the used methods gives
a closer results to the exact ones. Moreover, Figure 11.c illustrates well that the
HBSP method does not provide bounds.

4.2 Queueing network

In this section, we study a tandem queueing network with the MAWI traffic trace
(Figure 2) as input arrival histogram. The network is defined by 3 service nodes
having the following deterministic service rate: S1=110 Mb/s, S2=107.5 Mb/s
and S3=106.5 Mb/s. The buffers sizes are set to B1=2 Mb, B2=1 Mb and B3=1
Mb. The analysis of the network is performed for two reductions 100 and 500
respectively on the input histogram of each queue (see Table 1).
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We study as performance measures: blocking probability (Prob(B)), mean
buffer length (E[Qi]i={1, 2, 3}) and throughput (expected value of the depar-
ture histogram) (E[Di]i={1, 2, 3}). We compute also mean transmission delays
(E[Ti]i={1...4}) in each queue by using Little’s theorem. In the last row, we
present the execution time for the whole network analysis. These examples show
that our method is fast even if it is slightly higher than HBSP. Moreover, we
derive bounds which are more accurate than the results given by HBSP.

Bins 100 500

Exact Lower b. Upper b. HBSP Lower b. Upper b. HBSP

Prob(B) 0.1818 0.1714 0.1937 0.2147 0.1798 0.1846 0.1854

Queue 1 E[Q1] 938529 908137 969289 1019260 931778 945367 950271

E[D1] .106 4.26185 4.25076 4.27272 4.24416 4.25954 4.26416 4.26055

E[T1] 0.2202 0.2136 0.2269 0.2402 0.2188 0.2217 0.2230

Prob(B) 0.1735 0.1200 0.2052 0.1551 0.1481 0.1809 0.1559

Queue 2 E[Q2] 488719 425739 524331 468094 464797 497174 474322

E[D2] .106 4.24692 4.23377 4.25604 4.23441 4.24325 4.24903 4.24776

E[T2] 0.1151 0.1006 0.1232 0.1105 0.1095 0.1170 0.1117

Prob(B) 0.1635 0.0782 0.2379 1.18 .10−6 0.1286 0.1799 0.2223

Queue 3 E[Q3] 505240 388396 585229 39418.4 463092 524231 564428

E[D3] .106 4.2408 4.22816 4.24768 4.23441 4.23732 4.2425 4.23809

E[T3] 0.1191 0.0919 0.1378 0.0093 0.1093 0.1236 0.1332

Ex. Time (s) 21868 2.20 2.16 0.13 14.57 18.21 0.28

Table 1. Numerical results for the network using MAWI Traffic trace

5 Conclusions

Performance analysis of communication networks under general traffic is very
difficult and sometimes impossible by simulation and queueing theory. We pro-
pose in this paper to develop a formalism based on stochastic bounds in order
to reduce the size of the traffic histograms. We apply an algorithm based on
dynamic programming to define bounding histograms. We analyze the perfor-
mance of tandem queueing networks. We consider real traffic traces and derive
bounds on different performance measures as blocking probabilities and buffer
occupancy. We compare our results with the system under the exact traffic trace,
and those obtained from the HBSP approximation. We show clearly that our re-
sults are more accurate and can be obtained within very interesting execution
times. The more important point is the fact that we derive stochastic bounds
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which provide guarantee for non decreasing rewards. We will extend the theory
in the near future to deal with non stationary flows.
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