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Abstract. We analyze here a cloud system represented by hysteresis
multi server queueing system. It is characterized by forward and back-
ward thresholds for activation and deactivation of block of servers repre-
senting a set of VMs (Virtual Machines). The system is represented by a
complex Markov Chain which is difficult to analyse when the size of the
system is huge. We propose both analytical and numerical mathemat-
ical methods for deriving the steady-state probability distribution. We
compute then performance and energy consumption measures and we
define an overall cost taking into account both aspects. We compare the
proposed methods with respect to the computation time and we analyse
the impact of some parameters on the behaviour of the system.

1 Introduction

Improving the energy consumption of a cloud while guaranteeing a given quality
of service is a problem encountered today by cloud providers. One way to achieve
this is to adapt the capacities to demand which is made easier today with the
virtualization of the servers. Hence, it is possible to modulate, in a transparent
manner, the number of active Virtual Machines (VMs) over time. However, find-
ing the policy that tailors resources to demand is a crucial point that requires
accurate assessment of both the energy expended and the performance of the
system. Multi server queuing models [2, 3] or server farms models [6, 15] have
been proposed to represent dynamicity of a data center as well as to compute
performance metrics. Multi-server threshold based-queueing system with hys-
teresis policy [4, 9, 13], in which activations and deactivations are governed by
sequences of forward and reverse different thresholds, have been proposed, on the
other hand, to efficiently manage the number of active VMs. For systems driven
by hysteresis policies, the assessment of both performance and energy consump-
tion requires the computation of the expected measures, but since cloud systems
are often defined on very large state spaces such a computation is difficult. When



the system is represented by a complex Markov chain, we face up a computa-
tional complexity problem which makes exact analysis very cumbersome or even
impossible.

Under some assumptions, evaluation of hysteresis multiserver systems has
been already studied in the literature and different resolution methods have
been presented to compute efficiently the performance measures of the system.
Among the most significant works, we can mention the work of Lui and Gol-
ubchik [13] which is widely used in the literature. It solves the model using the
concept of Stochastic Complement Analysis (SCA). It is based on partitioning
the state space in disjoint sets in order to aggregate the Markov chain. In [12],
Le Ny et al. propose an other way to compute the steady-state probabilities of
a heterogeneous multi-server threshold queue with hysteresis by using a closed-
form solution. Otherwise, in [1] an aggregated bounding approach is proposed to
derive accurate bounds on performance measures. However, in these papers, it
had been only considered the case where one VM is activated (resp. deactivated)
according to the demand and the threshold sequences. On the other hand, Mi-
trani [14,15] defines server farm models in which several servers are activated at
the same time. They are called activations by block. Such approaches allow to
model more general practical models.

We propose in this paper to extend the current state of art and to cou-
ple the advantages of the activation by block and the advantages of hystere-
sis policy by considering a multi-server system with hysteresis in which activa-
tions/deactivations are made by block. This, up to our knowledge, has never
been considered and studied previously in the literature.

This allows us to consider both performance and energy consumption in order
to propose a trade-off between them. For the multi-server system with hysteresis
and block activation, we establish and present three resolution methods. First
method consists to adapt and extend the SCA aggregation method of [13]. The
second investigated method is a numerical approach based on Level Dependent
Quasi Birth and Death (LDQBD) method. At last, an analytical approach based
on the balance equations method of [12] is presented in details. We adapt [12] and
get closed form formulas for the steady-state probability distribution. Further-
more, by relaxing the former assumptions on the threshold sequences imposed
by [13] or [12], we have generalized the set of threshold values. We then perform
numerical results for Markov chains with large state space, as in cloud systems,
and establish an overall cost taking into account both performance and energy
consumption. Moreover, as we consider in this model more general assumptions
for the thresholds, we can see in details the impact of their values on performance
and energy consumption.

The paper is organized as follows: next (in section 2), we describe the cloud
system and present the considered queueing model. In section 3, we detail the
different methods to solve the model and compute the steady state probability
vector. While part 4 presents the formulation used to express the expected costs
in terms of performance and energetic consumption for the model, section 5
presents numerical results of performance and energy consumption measures.



Finally, achieved results are discussed in the conclusion and comments about
further research issues are given.

2 Cloud system description

We analyse a cloud system composed by a set of Virtual Machines (VMs). We
model it using a multi-server queue, with C homogeneous servers representing
the VMs. The service time of each VM is exponential with mean rate µ. In
order to represent the dynamicity of resource provisioning, the VMs can be
activated and deactivated over time. We assume that the job requests arrive at
the system following a Poisson process with rate λ, and are enqueued in a finite
queue. An arriving request can be rejected if it finds the system, which have
a whole capacity of B, full. The servers management is governed by threshold
vectors which control the operation of activating and deactivating the VMs.
These thresholds depend on the number of customers waiting in the system.

We suppose the case where several VMs can be simultaneously activated
or deactivated what is called activated or deactivated by block. We define K
functioning levels, where each level corresponds to a given number of active
servers. The number of active servers at level k is fixed and denoted by Sk,
where S1 ≤ S2 ≤ ... ≤ SK = C. We suppose that S1 ≥ 1, so we have at least
one active server by assumption.

The transition from functioning level k to level k+ 1 allows to allocate (turn
on) one or more additional servers, going from Sk to Sk+1 active servers, while
the transition from level k to level k− 1 allows to remove (turn off) one or more
active servers, going from Sk to Sk−1 active servers. Depending on the system
occupancy, we transit from the level k to level k+ 1 when the occupancy in the
system exceeds a threshold Fk, and from level k to level k−1 when the occupancy
in the system falls below a threshold Rk−1. The model is then characterized by
activation thresholds F = (F1, F2, ..., FK−1) (called also forward thresholds), and
deactivation thresholds R = (R1, R2, ..., RK−1) (called also reverse thresholds).
These thresholds are fixed and can not be modified during the system works.
We furthermore assume that F1 < F2 < ... < FK−1, that R1 < R2 < ... < RK−1
and that Rk < Fk,∀k, 1 ≤ k ≤ K − 1. We suppose that server deactivations
occur at the end of the service, and when multiple servers are deactivated at the
same time, all the customers who have not completed their service return to the
queue.

The underlying model is described by the Continuous-Time Markov Chain
(CTMC), denoted {X(t)}t≥0. A state is represented by a couple (m, k) such
that m is the number of customers in the system and k is the functioning level.
The state space is denoted by A and is given by :

A = {(m, k) | 0 ≤ m ≤ F1, if k = 1 ,

Rk−1 + 1 ≤ m ≤ Fk, if 1 < k < K ,

RK−1 + 1 ≤ m ≤ B, if k = K} .



The transitions between states then follows:

(m, k)→ (min{B,m+ 1}, k), with rate λ , if m < Fk ;
→ (min{B,m+ 1},min{K, k + 1}), with rate λ, if m = Fk ;
→ (max{0,m−1}, k), with rateµ·min{Sk,m}, if m> Rk−1+1;
→ (max{0,m−1},max{1, k−1}) with rateµ·min{Sk,m}, ifm=Rk−1+1 .

An example of the transitions is given Figure 1.
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Fig. 1. Transition structure for K = 3, S1 = 4, S2 = 6, S3 = 8, R1 ≥ 5 and R2 ≥ 7.

From a practical perspective, several other models fit with this block repre-
sentation. For example, it can represent heterogeneous nodes of a cluster (pos-
sibly virtual), each node having a different number of cores. These nodes can
be idle or activated. In this case, a node is represented by a level and Sk is the
number of cores of the node. It can also represent a single physical component
composed by many cores that can be activated or deactivated. On each core
(represented by a level) a given number of Sk VMs are placed that share the
CPU. These models follow the same markovian representation than the model
studied here but their costs are different.

3 Resolution approaches

We expose hereafter three techniques to solve the CTMC and compute the
steady-state probability vector. These resolution methods are either numerical
or analytical or both analytical and numerical. They have been developed for the
model and their correctness is shown. Some comparisons are presented Section 5.

3.1 Stochastic Complement Analysis (SCA)

To solve the {X(t)}t≥0 Markov chain, the first approach, proposed by Lui et
al. [13], consists to aggregate the underlying Markov chain and uses a numerical
method to compute the steady-state distribution. The different restrictions of
[13] (i.e. Rk < Fk−1, ∀k and activation deactivation of a single server) can be



relaxed without substantially modifying the framework. Our approach considers
block activations and deactivations as well as different orders of the thresholds:
Rk < Fk−1 and Rk ≥ Fk−1, for all k. It is presented below and some details can
be found in [8].

First, we aggregate the state space of the underlying Markov chain by parti-
tioning the set A into disjoint subsets. These subsets depend here on the func-
tioning levels. Hence, the state space A is partitioned into K distinct sets denoted
Ak, where, for any k in 1, . . . ,K, we have Ak = {(i, j) | (i, j) ∈ A, j = k}. The
set Ak contains the states belonging the level k.

From each subset, we define a corresponding Markov chain. Let {Xk(t)}t≥0
be the Markov chain defined on state space Ak. These derived Markov chains
are defined on reduced state spaces which makes their analysis less complex.
The resolution of each of the derived Markov chain defines a conditional steady
state probabilities. For the whole chain {X(t)}, by applying the state aggregation
technique, each subset Ak is now represented by a single state, and an aggregated
process is defined. A resolution of this aggregated process is performed, i.e.,
the probabilities of the system being in any given set are computed. At last,
a disaggregation technique is applied to compute the individual steady state
probabilities for the original Markov process. The method correctness is based
on the following theorem stated by Lui et al. in [13].

Theorem 1. Given an irreducible Markov process with state space A, let us
partition this state space into two disjoint sets A1 and A2. Then, the transition
rate matrix (denoted by Q) is given as follows:

Q =

(
QA1A1 QA1A2

QA2A1 QA2A2

)
,

where Qi,j is the transition rate sub-matrix corresponding to transitions from
partition i to partition j.

We point out that the computation of the steady state probabilities of the derived
Markov chains {Xk(t)} is performed using a numerical resolution method.

3.2 Level Dependant Quasi Birth and Death Process

The particular form of the generator of {X(t)}t≥0 suggests us to use the Quasi
Birth and Death (QBD) processes in order to benefit from the numerous nu-
merical methods to solve them [16]. For short, a QBD process is a stochastic
process in which the state space is two dimensional and can be decomposed in
disjoint sets such that transition may only occur inside a set or occur towards
only two other sets. This results in a generator with a tridiagonal form (as the
birth and death process) in which the terms on the diagonals are matrices. When
the matrices are identical for each level, it is said level independent but when
the matrices are different the QBD is said level dependant (LDQBD).

Let us define Qk,k′(i, j) that denotes the i-th line and j-th column element
of matrix Qk,k′ . We have:



Proposition 1. The Markov Chain {X(t)}t≥0 is a Level Dependant QBD with
K levels, corresponding to the functioning levels. Its generator Q is decomposed
in:

Q=



Q1,1 Q12,

Q2,1 Q2,2 Q2,3

Q3,2 Q3,3 Q3,4

. . .
. . .

. . .

QK−1,K−2 QK−1,K−1 QK−1,K
QK,K−1 QK,K


.

For all k, the inner matrices Qk,k−1, Qk,k and Qk,k+1 are respectively of dimen-
sion dk × dk−1, dk × dk and dk × dk+1, letting dk = Fk − Rk−1, R0 = −1 and
FK = B.

For k = 1 we have:

Q1,1(i, j) =



λ if j = i+ 1

µmin{S1, i} if j = i− 1

−λ if i = 1 and j = 1

−(λ+ µmin{S1, i}) if i = j and i 6= 1

0 otherwise

,

and

Q1,2(i, j) =

{
λ if i = d1 and j = F1 −R1 + 1

0 otherwise
.

For k ∈ {2, . . . ,K − 1}, we get:

Qk,k−1(i, j) =

{
µmin{Sk, Rk−1+1} if i =1 and j=Rk−1−Rk−2
0 otherwise

,

also

Qk,k(i, j) =


λ if j = i+ 1

µmin{Sk, Rk−1 + i} if j = i− 1

−(λ+ µmin{Sk, Rk−1 + i}) if i = j

0 otherwise

,

and

Qk,k+1(i, j) =

{
λ if i = dk and j = Fk −Rk + 1

0 otherwise
.

Finally for k = K, it follows

QK,K−1(i, j) =

{
µmin{SK , RK−1+1} if i=1 and j=RK−1−RK−2
0 otherwise

,



and

QK,K(i, j) =



λ if j = i+ 1

µmin{SK , RK−1 + j} if j = i− 1

−(λ+ µmin{SK , RK−1+j}) if i = j and j 6=dK

−µmin{SK , RK−1 + j} if i = j =dK

0 otherwise

.

The proof can be found in [8].
Numerically solving QBD is a hard computational task requiring to solve

matrix equations and is often based on matrix geometric methods [11, 16] or
kernel methods [7]. This is even more the case for LDQBD. Here, among the
numerical existing methods to solve them, this one proposed in [5] is used since
it is shown that this method is efficient and numerically stable.

3.3 Closed form solution using balance equations

We follow the approach of [12] and give a closed form for the steady state prob-
ability using balance equations and cuts on the state space. The relevance of our
work is that we can take more general cases than [12] for the thresholds. We
assume not only the case Rk ≤ Fk−1, but also the case Rk > Fk−1 for each level
2 ≤ k ≤ K. In this method, the probabilities are computed level by level, from
level 1 to levelK. For states of level 1, the steady-state probabilities are expressed
in terms of π(0, 1). For a level k ∈ {2 . . .K}, the process has two steps. First, the
steady-state probability of the first state of the level: π(Rk−1 +1, k) is expressed
in terms of the last state of the precedent level π(Fk−1, k − 1) which has been
already computed and which can be expressed in terms of π(0, 1). After that,
the other probabilities of the level k are computed in terms of π(Rk−1 + 1, k).
Henceforth, it results that all the probabilities are computed in terms of π(0, 1).
At the end, from the normalizing condition, π(0, 1) can be derived. From now
on, for any k ∈ {1 . . .K}, we define µk = µSk, ρ = λ

µ and ρk = λ
µk

. Next, we
give the formulas for the level 1 probabilities.

Level 1 The following lemma gives the steady-state probabilities for level 1.

Lemma 1 (Level 1 probabilities). In level one, the service rate depends on
the number of customers in the system. So, for a state (m, 1), if 1 ≤ m < S1,
then the service rate is mµ and if m ≥ S1 it is S1µ. We can deduce π(m, 1) by :

π(m, 1)=



ρm

m!
π(0, 1) if 0 ≤ m ≤ S1, (1)

ρm−S1
1

ρS1

S1!
π(0, 1) if S1 < m ≤ R1,(2)

ρS1

S1!

(
ρm−S1
1 − ρF1−S1+1

1 (1− ρm−R1
1 )

1− ρF1−R1+1
1

)
π(0, 1) ifR1+1≤m≤F1(3)



The proof uses special cuts on state space from which one derives local balance
equations. It is given in [8].

Level k Let us consider now k such that 2 ≤ k ≤ K − 1. We assume that
Rk−1+1 ≥ Sk, and thus the service rate for each level is min(Rk−1+1, Sk) = Skµ.
In order to express the relationship between level k − 1 and level k, we should
consider the cut of the state space between states of level k − 1 and states
of level k. This gives us the following evolution equation: π(Fk−1, k − 1)λ =
π(Rk−1 + 1, k)µk, which is equivalent to:

π(Rk−1 + 1, k) = ρkπ(Fk−1, k − 1) . (4)

All probabilities of level k can be expressed with respect to π(Rk−1 + 1, k).
However, these probabilities depend also of the level k+1 by the threshold value
Rk. Therefore two cases should be considered: either Rk ≤ Fk−1 or Rk > Fk−1.

We present now the case where Rk > Fk−1.

Lemma 2. When Rk > Fk−1, for any k ∈ {2 . . .K − 1}, we have:

π(m, k) =
1− ρm−Rk−1

1− ρk
π(Rk−1 + 1, k) if Rk−1 + 2 ≤ m ≤ Fk−1 + 1, (5)

π(m, k) =
ρ
m−Fk−1−1
k − ρm−Rk−1

k

1− ρk
π(Rk−1 + 1, k) if Fk−1 + 2 ≤ m ≤ Rk, (6)

π(m, k) =
ρ
m−Fk−1−1
k − ρm−Rk−1

k

1− ρk
π(Rk−1 + 1, k)

− ρk
ρk+1

1− ρm−Rk

k

1− ρk
π(Rk + 1, k + 1) if Rk + 1 ≤ m ≤ Fk. (7)

with

π(Rk+1, k + 1) = ρk+1
ρ
Fk−Fk−1−1
k − ρFk−Rk−1

k

1− ρFk−Rk+1
k

π(Rk−1 + 1, k) . (8)

The proof of lemma 2 is in [8].

We deduce from Eq. (8), that π(Rk + 1, k + 1) is also expressed in terms of
π(Rk−1 + 1, k). Thus all the probabilities in Lemma 2 can be expressed in terms
of the steady-state π(Rk−1 + 1, k) which is the first state of the level. Since,
furthermore, π(Rk−1 + 1, k) is computed from π(Fk−1, k − 1), then it can be
expressed in terms of π(0, 1). So from the normalizing condition we derive all
the probabilities.

Since the case Rk ≤ Fk−1, has been considered in [12], it follows :



Lemma 3 ( [12]). When Rk ≤ Fk−1, for any k ∈ {2 . . .K − 1}, we have

π(m, k) =
1− ρm−Rk−1

k

1− ρk
π(Rk−1 + 1, k) if Rk−1 + 2 ≤ m ≤ Rk (9)

π(m, k) =
1− ρm−Rk−1

k

1− ρk
π(Rk−1 + 1, k) (10)

− ρk
ρk+1

1− ρm−Rk

k

1− ρk
π(Rk + 1, k + 1) if Rk + 1 ≤ m ≤ Fk−1 + 1,

π(m, k) = ρ
m−Fk−1−1
k

1− ρFk−1−Rk−1+1
k

1− ρk
π(Rk−1 + 1, k) (11)

− ρk
ρk+1

1− ρm−Rk

1− ρk
π(Rk + 1, k + 1 if Fk−1 + 2 ≤ m ≤ Fk .

Proofs are given in [12].

Level K Let us consider newt the level k = K.

Lemma 4 ( [12]). The steady-state probabilities for the level K: π(m,K) are
equal to:

π(m,K)=

(
1− ρm−RK−1

k

1− ρK

)
π(RK−1+ 1,K) if RK−1+2 ≤ m ≤ FK−1+1,

π(m,K)=

(
1−ρFK−1+1−RK−1

k

1− ρK

)
ρ
(m−FK−1−1)
K π(RK−1+1,K) if FK−1+2 ≤ m≤B.

It is proved in [12].

4 Performance measures and energy cost parameters

We propose now to calculate the expected cost in terms of performance and
energy consumption for the model presented in this paper. Once the steady-
state vector is calculated, we get various performance and energy consumption
measures. Indeed the cost is expressed as an expected Markov reward function
R, where R =

∑
m,k π(m, k) r(m, k) and r(m, k) be the reward of state (m, k).

Metrics of interest are described hereafter.
First, we give the performance measures. These one are related to the Ser-

vice Level Agreement (SLA) which defines several QoS (Quality of Service) con-
straints that the provider should guarantee. Losses, queue lengths and processing
speed are the main parameters that are taken into account.

The mean number of customers in the system is denoted by NC and is equal
to: NC =

∑
(m,k)∈A π(m, k) ·m.

The mean number of losses due to full queue by time unit is denoted by NR
and is equal to: NR = λ · π(B,K).



The mean response time is denoted by R and is equal to: R = NC/
(
λ · (1−

π(B,K))
)
.

Energy consumption measures are defined now. The energy costs represen-
tation adopted here is mainly based on [10]. In this paper, the energy costs of
a VM in use can be decomposed in two parts : static and dynamic costs. Static
costs are mainly independent of the workload and comprise idle (or standby)
consumption of the nodes, routers and consumption of the data center (cooling
system, power distribution units,....) which is evaluated by the industrial metrics
of the Power Unit Efficiency (PUE). On the other hand, dynamic costs include
the energy consumption part of servers, storage devices and network that is in-
duced by the resource usage and then depends on the workload. The hysteresis
approach considers only the dynamic costs but static costs should be added in
order to get the whole consumption of a VM. Hence, energy consumption is de-
pending on both mean number of active servers (dynamic part of the cost) and
mean number of their activation and deactivations, which represent the energy
cost of the start (or pausing) and the data migration of a VM.

The mean number of active servers in the system is denoted by NS and is
equal to: NS =

∑
(m,k)∈A Sk · π(m, k).

The mean number of activations triggered by time unit, is denoted by NA
and is given by: NA = λ

∑
(m,k)∈A(Sk+1 − Sk) · 1{m=Fk;1≤k≤K−1} · π(m, k).

The mean number of deactivations triggered by time unit is denoted by ND
and is given by:

ND =
∑

(m,k)∈A

µmin{Sk,m}(Sk − Sk−1)π(m, k) · 1{m=Rk−1+1 ; 1≤k≤K−1}

In order to consider both performance and energy consumption, then we
define the overall expected cost by time unit for the underlying model as follows:
C = CH ·NC+CS ·NS+CA ·NA+CD ·ND+CR ·NR. where, CH is the per capita
cost of holding one customer in the system within one time unit, CS is the per
capita cost of using one working server within one time unit, CA is the activating
cost (cost of switching one server from deactivating mode to activating mode),
CD is the deactivating cost and CR is the cost of job losses due to full queue.

5 Numerical results

This section focuses on the analysis of the queueing model defined before (Section
2). We perform some numerical examples in order to show the interest of the
model and the improvement of the resolution methods for the analysis of Cloud
performance.

First, the three resolution approaches depicted in this work (SCA, LQBD
and closed form solution) are compared and we observe which approach is the
most relevant in terms of computational complexity and results accuracy. At
last, using the most relevant resolution method, some use cases of cloud systems
are analyzed and we observe some performance metrics. All evaluations were



implemented in Matlab and performed on laptop with 64-bit Windows 10, 8 GB
RAM and 2.00 GHZ Intel i7-4750HQ CPU.

5.1 Comparing the resolution approaches

Our objective here is to determine among the proposed resolution methods, the
most relevant one. The relevance criteria are defined in terms of computation
time and accuracy of the results. So, a set of experiments are performed for
this purpose. We consider a threshold queueing model with hysteresis where the
activation and deactivation of VMs are occurred one by one (ie. S1 = 1, Sk+1 =
Sk + 1, ∀k < K, which means that C = SK = K). This one by one activation
case is considered since it represents the worst case in terms of computational
complexity, and is thus the best way to compare the different proposed methods.
We assume here that each server provides a service following an exponential
distribution with rate 1. We generate several instances by increasing the size of
the model (i.e. the number of levels (K) and the size of buffer B). We illustrate in
Table 1, the computation times of each method for these instances. The forward
and reverse thresholds are set as follow: F = {50, 100, 150, . . . , B} and R =
{10, 40, 90, 140, 190, . . . , B}. Threshold values have been taken arbitrarily and
additional studies with different choices of threshold sequences will be the subject
of future work.

SCA with SCA with
LDQBD Closed form

Power method GTH method

λ = 2, K = 10,
2.933 0.0406 0.0121 0.00905

B = 750, (1271 states)

λ = 10, K = 100,
4117.59 0.9587 0.9889 0.0823

B = 7500, (13421 states)

λ = 10, K = 500,
+3600 41.573 88.01 0.4979

B = 37500, (67421 states)

λ = 10, K = 1000,
+3600 307.54 1330.27 1.0561

B = 75000, (134921 states)

Table 1. Computational times (in seconds) of proposed resolution methods.

Through this table, one can clearly see that the closed form solution is the
fastest one. This method is more than 1000 times faster than LQBD and 100
times than the SCA with GTH method. This result is expected because the
closed form solution is based on a set of formulas containing basic operators
contrary to LQBD method based on matrix inversion or SCA method with GTH
approach where the numerical resolution approach GTH has a cubic complexity.
It should be precised that since the SCA approach is a combination of state



aggregation technique and numerical solution of Markov chain, then we propose
to distinguish two numerical methods commonly used: the GTH [18] and power
methods [17].

Considering the precision of the results, it could be noticed that even if the
SCA and LQBD methods are numerical resolution approach, their precisions
are not so far from the closed form method. Indeed, the gap on the stationary
distribution vector between the different methods is smaller than 10−12.

To confirm our conclusions, we propose to observe the relevance of the reso-
lution methods according to the variation of the arrival rate λ. For this example,
previously cited in the Table 1, parameters are C = K = 100, B = 7500 and
µ = 1. Then, we let vary the arrival rate from λ = 1 to λ = 100, and assess
the computational resolution times of the closed form, LDQBD and SCA+GTH
methods. In view of the computation times of the SCA + Power method (rather
longer) this method is not considered in this comparative study. The obtained
results are illustrated in the following figure.
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Fig. 2. Computational times (in seconds) versus arrival rate (λ).

In view of these results, it is clear that the closed form method is the most
relevant resolution approach. However, for large ρ numerical methods could be
more precise than the formal one due to the limits of the computer. This point
should receive further investigations.

5.2 Performance and energy consumption measures

In this part, all computations are made with the closed form formula. We assess
here the performance of a large cloud system and illustrate the trade-off between
performance and energy consumption. We consider a multi server queue model
driven by a hysteresis policy. We want to see the impact of the number of servers
on the performance and the energy-efficiency of a cloud henceforth, the metrics
defined Section 4 are used. We exhibit several cases in which our data center



is composed by a pool of C virtual machines. It is assumed that the number
C ranges from 50 to 10000 VMs, this last number being the size of a small
data center. The buffer size is set to B = 1000 jobs, the service rate of each
VM is set to µ = 10 and we let vary the arrival rate varying between 100 and
1000 jobs/min. We assume that for each considered model there are fifty levels
(K = 50). The forward thresholds and reverse thresholds are set respectively to
F = {20, 40, 60, . . . , 1000} and R = F − 10. The sequence of service levels is
taken as follows: S = {s | s = i × b C50c, ∀i = 0 . . . 50}. Concerning the energy
consumption parameters, we set the costs to 1: the energy consumption of one
working server within one time unit is CS = 1, the cost of holding one job in the
system within one time unit is CH = 1, the cost of activating or deactivating
one server are respectively CA = 1 and CD = 1, and the cost of job losses due
to full queue is CR = 1.
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100 200 300 400 500 600 700 800 900 1000

10
-300

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

B
lo

c
k
in

g
 p

ro
b

a
b

ili
ty

 

 
C=50
C=100

λ

(b) Blocking probability

Fig. 3. Performance metrics versus arrival rate (λ).

The performance results are illustrated in Figure 3(a) and 3(b). In Figure
3(b), one illustrates only the curves for C = 50 and C = 100, since the other
models have a zero blocking probability. From these figures, we can obviously
observe that the number of servers increase improves the performance. This is
shown, in Figure 3, by the decrease of the number of jobs in the system and the
blocking probability.

However, in terms of cost, one obviously observes the opposite when the
system is moderately loaded. Hence, when the system is weakly / moderately
loaded, the models that have a significant number of active VMs underperform
comparatively to models with relatively few active VMs. Indeed, some VMs
consume energy without performing any service. This can be seen on Figure 4
for C = 10000. On the other hand, when the system is overloaded, the cost of
losses increases and affects the global cost. This can be clearly seen Figure 4
for the model with C = 50 when λ > 450 and for the one with C = 100 when
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Fig. 4. Overall expected costs versus arrival rate (λ).

λ > 900. This is consistent with intuition. The oscillation phenomenon observed
for large C remains unclear and deserves to be studied in more detail.

It could be noticed that the closed form resolution allows to compute the
performance measures of all the instances in very short times (smaller than 2
seconds) even in cases where the number of VMs is 10000. Since concrete small
cloud systems or cloud modules have a number of VMs around 10000, this shows
the practical value of our method for answering rather quickly the questions
about energy consumption and network dimensioning.

6 Conclusion

We develop numerical and analytical methods for the analysis of a hysteresis
queueing system modelling a cloud system with activation/deactivation by block
of VMs. One important contribution of this paper is to suppose few constraints
on the thresholds. We give numerical values of the performance even in the case
of large Markov chains, and show that our methods are hugely faster than the
classical ones. We define a global cost for performance and energy consumption
in order to propose a trade off between performance and energy consumption,
and we analyse the impact of the thresholds on it. For the future, we need to
analyze real cloud architectures with concrete energy consumptions for the VMs
in order to compute relevant cost values. We also want to develop optimization
algorithms to obtain the thresholds which minimize the overall cost.
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cloud computing: modeling techniques and their applications. Journal of Internet
Services and Applications 5 (2014)

3. Artalejo, J.R., Economou, A., Lopez-Herrero, M.J.: Analysis of a multiserver queue
with setup times. Queueing Systems 51(1-2), 53–76 (2005)

4. Asghari, N., Mandjes, M., Walid, A.: Energy-efficient scheduling in multi-core
servers. Computer Networks 59(11), 33–43 (2014)

5. Baumann, H., Sandmann, W.: Numerical solution of level dependent quasi-birth-
and-death processes. Procedia Computer Science 1(1), 1561–1569 (2010)

6. Gandhi, A., Harchol-Balter, M., Adan, I.: Server farms with setup costs. Perfor-
mance Evaluation 67(11), 1123–1138 (2010)

7. Gaujal, B., Hyon, E., Jean-Marie, A.: Optimal routing in two parallel queues with
exponential service times. Discrete Event Dynamic Systems 16(1), 71–107 (2006)

8. Kandi, M., Aı̈t-Salaht, F., Castel-Taleb, H., Hyon, E.: Mathematical methods for
analyzing performance and energy consumption in the cloud. Tech. rep., Institut
Mines-Telecom Telecom SudParis (2017)

9. Kitaev, M., Serfozo, R.: M/M/1 queues with switching costs and hysteretic optimal
control. Operations Research 47, 310–312 (1999)

10. Kurpicz, M., Orgerie, A.C., Sobe, A.: How much does a vm cost? energy- propor-
tional accounting in vm-based environments. In: PDP: Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing. pp. 651–658
(2016)

11. Latouche, G., Ramaswami, V.: A logarithmic reduction algoritm for quasi-birth-
death processes. Journal of Applied Probability 30, 650–674 (1993)

12. Le Ny, L.M., Tuffin, B.: A simple analysis of heterogeneous multi-server threshold
queues with hysteresis. In: Applied Telecommunication Symposium (ATS) (2002)

13. Lui, J.C., Golubchik, L.: Stochastic complement analysis of multi-server threshold
queues with hysteresis. Performance Evaluation 35(1), 19–48 (1999)

14. Mitrani, I.: Service center trade-offs between customer impatience and power con-
sumption. Performance Evaluation 68(11), 1222–1231 (2011)

15. Mitrani, I.: Managing performance and power consumption in a server farm. Annals
of Operations Research 202(1), 121–134 (2013)

16. Neuts, M.F.: Matrix-geometric solutions in stochastic models: an algorithmic ap-
proach. John Hopkins University Press (1981)

17. Philippe, B., Saad, Y., Stewart, W.J.: Numerical methods in markov chain mod-
eling. Operations Research 40(6), 1156–1179 (1992)

18. Stewart, W.: Introduction to the numerical Solution of Markov Chains. Princeton
University Press, New Jersey (1995)


