
Chapter 1
Computing bounds of the MTTF for a set of
Markov Chains

F. Aı̈t-Salaht, J.M. Fourneau, N. Pekergin

Abstract We present an algorithm to find some upper and lower bounds of the
Mean Time To Failure (MTTF) for a set of absorbing Discrete Time Markov Chains
(DTMC). We first present a link between the MTTF of an absorbing chain and
the steady-state distribution of an ergodic DTMC derived from the absorbing one.
The proposed algorithm is based on the polyhedral theory developed by Courtois
and Semal and on a new iterative algorithm which gives bounds of the steady-state
distribution of the associated ergodic DTMC at each iteration.

1.1 Introduction

Finite DTMC models provide a very efficient technique for the study of dynamical
systems. However, in many engineering problems, it is still hard to give the precise
parameters to describe the chain: we need the exact transition probabilities between
the states of the chain. In many cases, we only know an interval for these transition
probabilities. This is equivalent to state that the underlying model M is inside of a
set of chains described by an entry-wise lower bounding matrix L and an entry-wise
upper bounding matrix U. Many results have been proposed to find bounds on the
steady-state distribution when the chain is ergodic (see for instance the polyhedral
theory developed by Courtois and Semal [4] and applied by Muntz and his col-
leagues [7] for reliability problem and more recently by Buchholz [2] or ourselves
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for a faster algorithm [1]). In [8], the authors give the algorithms for the efficient
model checking of such models.

Here we investigate a new problem. We assume that the chain is absorbing and
the transition probabilities are imprecise (partially known). More formally, we as-
sume that the chain belongs to a set of absorbing Markov chains having the same
set of absorbing states, A . We will denote by � the element-wise comparison of
two vectors (or matrices). We also assume that the matrix of the chain M satisfies
L �M � U. We study how to find bounds for the MTTF of a such model M. We
show first the relation between the MTTF of an absorbing chain and an associated
ergodic DTMC built from the absorbing one. We then use the polyhedral theory
and the same arguments to construct bounds on MTTF. We use the new numerical
technique given in [3] to solve the steady-state distribution of each matrix consid-
ered in the polyhedral approach we have already proposed in [1] to study imprecise
DTMCs. This algorithm that we apply after some on imprecise absorbing provides
at each iteration upper and lower bounds of the MTTF. Therefore, we obtain bounds
at the first iteration and at each iteration the bounds are improved. Our algorithm
is also numerically stable as it is only based on the product of non negative vectors
and matrices. In the following of the paper, we describe how to link the MTTF of an
absorbing DTMC with the steady-state distribution of an ergodic associated DTMC.
Then in section 3, we briefly introduce the I∇L and I∇U Algorithms [3]. In section
4, we present how we can combine all these results to derive a bound for the MTTF
for a set of Markov chains. We illustrate the approach with some numerical results.

1.2 Mean Time To Failure

Let us first begin with some notations. All vectors are row vectors, ei is a row vector
with 1 in position i and 0 elsewhere, the vector with all entries equal to 0 is denoted
by 0 and Id is used for the identity matrix. Finally, xt denotes the transposed vector
of x and ||x|| is the sum of the elements of vector x.

We consider a model defined by an absorbing DTMC noted by M. We assume
that we have several absorbing states and no recurrent class. We want to compute
the mean time to reach an absorbing state. We show how to transform this initial
problem to the construction of an ergodic DTMC and the analysis of its steady-state
distribution. More formally, we suppose that we use the following matrix decompo-

sition: M =

[
Id 0
R Q

]
, once we have organised the state space to have the absorbing

states (i.e. in set A ) before the transient states (i.e. in set T ).
The absorbing DTMCs are studied through their fundamental matrices [9]. By

assuming that there is no recurrent class, we have the following well-known results:

• The fundamental matrix F = (Id−Q)−1 exists.
• We assume that there exist several absorbing points. The probability to be ab-

sorbed in state j knowing that the initial state is i is equal to (F.R)[i, j].
• The mean time before absorption knowing that initial state is i is (F.et)[i].



1 Computing bounds of the MTTF for a set of Markov Chains 3

7

1

2

3

4

5 6

8

A

T

Fig. 1.1 Transition graph of an absorbing Markov Chain.

We propose to compute the mean absorbing time, called also MTTF through the
steady-state probabilities of an ergodic DTMC built by the underlying absorbing
one. We assume that the directed graph of the transient states T is strongly con-
nected. Note that it does not imply that there is a recurrent class among these states.

Let i be an arbitrary non absorbing state. We consider a new matrix built as
follows. First, we aggregate all the absorbing states into one state which is the first
one of the state space. Thus, matrix R is also summed up into a vector rt . Second,
we add a loop on state 1 with probability 0.5. Third, we modify the first row: we
add a vector denoted as pi whose entries are all equal to zero except entry i which
is 0.5. Finally, the built stochastic matrix, Mi is as follows:

Mi =

[
1/2 pi
rt Q

]
. (1.1)
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Fig. 1.2 Transition graph of the new Markov Chain to obtain the time before being absorbed
knowing that we begin at state 7.

In the following, set F will denote the state space of Mi. It contains set T and
one state which represents the aggregation of the absorbing states of M.
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Property 1 Matrix Mi is ergodic. Therefore the steady-state distribution of Mi (de-
noted as πi) exists.

Proof. The chain is finite. The graph of the states in T is strongly connected and
there is a directed edge between state 1 and state i and between a state in T and
state 1 because vector r is not zero. Therefore, the graph on the whole state space is
strongly connected. Finally, as there is a loop at state 1, the chain is aperiodic. Thus,
the chain is ergodic and the steady-state distribution exists.

The question is to find a relation between the MTTF of M and πi computed from
matrix Mi. Let E[Ti] be the mean time before the absorption knowing the initial
state is i for the absorbing chain M. On the other hand, for the ergodic DTMC Mi,
we know that 1/πi[1] is the mean time between two visits to state 1. To compute it,
we condition on the first transition out of state 1. We have two possible transitions:
a loop in state 1 with probability 1/2, so the time between two visits is 1 and a
transition into state i with probability 1/2, so the time between two visits is (1+
E[Ti]). Therefore:

1
πi[1]

=
(1+E[Ti])

2
+

1
2
.

Finally, we obtain E[Ti]:

E[Ti] =
2

πi[1]
−2. (1.2)

We have to find bounds on πi when the matrix is specified by matrices L and U.
To do this, we combine Muntz’s approach for imprecise DTMCs and the iterative
algorithm presented in [1]. The bounds on πi[1] will then provide bounds on MTTF
by using Eq. 1.2.

Let us first begin with the algorithm for exact calculation of πi[1] thus E[Ti] before
proceeding with imprecise Markov chains.

1.3 Algorithms based on monotone sequences

Let P be a finite stochastic matrix. We assume that P is ergodic. We first introduce
some quantities easily computed from P.

Definition 1. Set ∇P[ j] =miniP[i, j] and4P[ j] =maxiP[i, j]. Remark that ∇P may
equal to vector 0 but ∆P is positive as the chain is irreducible.

Bušić and Fourneau [3] proposed two iterative algorithms based on simple (max, +)(
resp. (min,+)) properties, called I∇L (resp. I∇U) which provide at each iteration a
new lower (resp. upper) bound x(k) (resp. y(k)) of the steady state distribution of P.

Theorem 1. Let P be an irreducible and aperiodic stochastic matrix with steady
state probability distribution π . If ∇P 6= 0, Algorithm I∇L provides at each itera-
tion lower bounds for all components of π and converges to π for any value of the
parameters a and b such that a� π , b� ∇P and b 6= 0.
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Algorithm 1 Algorithm Iterate ∇ Lower Bound (I∇L)
Require: a� π , b� ∇P and b 6= 0.
Ensure: Successive values of x(k).

1: x(0) = a.
2: repeat
3: x(k+1) = max

{
x(k),x(k)P+b(1−||x(k)||)

}
.

4: until 1−||x(k)||< ε .

One can check that the conditions on the initialisation part of the algorithm re-
quire that ||∇P|| > 0. Similarly, we have proved another algorithm (called I∇U) to
compute a decreasing sequence y(k) of iterative upper bounds. It is based on an ini-
tialization with vector4P and an iteration with operator min instead of max. Note
that combining both theorems we obtain a proved envelope for all the components
of vector π . It is also proved in [3] that the norm of the envelope converges to zero
faster than a geometric with rate (1−||b||). The algorithms have been implemented
in a tool called XBorne [5]. These algorithms also have two important properties.
First, under some technical conditions, an entry-wise bound on the stochastic matri-
ces provides an entry-wise bound on the steady-state distribution (see [3]). Second,
they deal with infinite matrix with some constraints on the associated directed graph
[6].

Example 1. Let P be a stochastic matrix P =


0.6 0 0.2 0.2 0
0.4 0.2 0.1 0.2 0.1
0.2 0.1 0.2 0.3 0.2
0.2 0 0.2 0.3 0.3
0.1 0 0 0.4 0.5

.

We have ∇P = (0.1, 0, 0, 0.2, 0). For ε = 10−5, algorithm I∇L with a = b = ∇P
provides the following sequence of lower bounds for the probabilities.

k 1 2 3 4 5 1−||x(k)||
1 0.17 0 0.06 0.22 0.06 0.4900
3 0.2413 0.0102 0.1092 0.2546 0.1446 0.2401
7 0.2869 0.0169 0.1409 0.2826 0.2151 0.0576
11 0.2968 0.0183 0.1481 0.2897 0.2332 0.0139
21 0.2997 0.0188 0.1502 0.2920 0.2389 0.0004
31 0.2997 0.0188 0.1503 0.2921 0.2391 1.1 10−5

1.4 Bounds of the MTTF

We now present how to deal with imprecise Markov chains. Muntz and his co-
authors [7] have proposed an approach for bounding steady-state availability. The
theoretical background is based on Courtois and Semal polyhedral results on steady-
state distribution [4]. We only present here a weak form of the theorem.
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Theorem 2. Given a lower bound L of the transition probability matrix of a given
DTMC (let’s assume that the chain has n states), we can compute a bounds for its
steady-state probability vector π . In a first step one compute the steady-state solu-
tion of n DTMCs. Transition probability matrix Ls associated with the sth DTMC
is obtained from sub-stochastic matrix L by increasing the elements of column s to
make Ls stochastic. Let πs be the steady state probability vector solution of the sth

DTMC. The lower (resp. upper) bound on the steady state probability of state j is
computed as minsπ

s[ j] (resp. maxsπ
s[ j]).

mins π
s[ j] ≤ π[ j] ≤ maxs π

s[ j]. (1.3)

We have showed in [1] how one can combine theorem 2 and I∇L and I∇U algo-
rithms to prove new algorithms which provide at each iteration a new component-
wise bounds on steady state distribution. To simplify the presentation, we only
present the upper bound case (for the lower bound see [1]). The main idea behind
the upper bounding algorithm is to compute first, for all s ∈ F an upper bound
Y (k),s associated with matrix Ls with I∇U algorithm. Then, we apply Muntz’s result
to deduce an upper bound on steady state distribution of π . This process is iter-
ated until the stopping criterion is reached. The sequences Y (k),s converges faster
than a geometric with rate (1−||∇Ls ||)). Once all these sequence have converged,
the max operator between distributions proved by the polyhedral theory does not
change either.

Algorithm 2 Algorithm Iterate ∇ Bounds for imprecise Markov chains
Require: ∀s ∈F , α[s]> 0.
Ensure: Successive values of Y (k) and X (k).

1: ∀s ∈F , Ls = L+α t es, cs =4Ls , bs = ∇Ls , Y (0),s = cs, X (0),s = bs.
2: repeat
3: ∀ s ∈F , Y (k+1),s = min

{
Y (k),s,Y (k),sLs +bs(1−||Y (k),s||)

}
.

4: Y (k+1) = maxs

{
Y (k+1),s

}
.

5: ∀ s ∈F , X (k+1),s = max
{

X (k),s,X (k),sLs +bs(1−||X (k),s||)
}

.

6: X (k+1) = mins

{
X (k+1),s

}
.

7: until ∑s(||Y (k),s||−1)< ε and ∑s(1−||X (k),s||)< ε .

Theorem 3. Let L be an irreducible sub-stochastic matrix, algorithm 2 provides
at each iteration k an element wise upper and lower bounds on the steady-state
distribution of any ergodic matrix entry-wise larger than L.

For a proof and some arguments on complexity, see [1]. We combine all these results
to obtain bounds on the MTTF. We consider an absorbing non-negative matrix M
define by L�M� U, such that each row sum is less than or equal to 1.

First, we consider a set of stochastic matrices P = {Ls |Ls is an irreducible
stochastic matrix and Ls�L}. s is a column index. Ls is matrix L where elements in
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the sth column have been increased as necessary to make the matrix stochastic. We
first add the following assumption: in the following we assume that r(k)> 0 for all
k. Therefore ∇(Ls)> 0 and we can apply the algorithms. For each matrix M ∈P ,
we define transition matrix Mi,s as in Equation 1.1. We use Muntz’s approach and
the results in [1] about the previous algorithms. Finally, the steady-state distribution
using the Algorithm 2 at iteration n is bounded by:

mins{X (n),s} ≤ πi ≤maxs{Y (n),s}.

Then, the bounds for the average time E[Ti] are:

E[Ti] =
2

maxs{Y (n),s}[1]
−2≤ E[Ti]≤

2
mins{X (n),s}[1]

−2 = E[Ti].

And we conclude with the theorem which states the result and we give a small
example.

Theorem 4. Let L be a sub-stochastic matrix, Algorithm 2 provides at each iteration
k a lower bound and an upper bound ot the MTTF of any absorbing matrix entry-
wise larger than L and defined on the same set of transient states T .

Example 2. Consider absorbing matrix

L =



1 0 0 0 0 0
0 1 0 0 0 0

0.30 0.1 0.2 0.1 0.1 0.2
0.20 0.3 0.2 0.1 0 0.1
0.25 0.2 0.1 0.2 0.2 0
0.10 0 0.2 0.1 0.2 0.1


.

Assume that we want to compute the expected time before being absorbed when
we begin at state i = 5. First, we aggregate state 1 and 2, which are absorbing states
in L and we modify the transition between the first state and state i = 5. Note that
state 5 is now the fourth state due to aggregation of state 1 and 2.

We obtain an irreducible sub-stochastic matrix


0.5 0 0 0.5 0
0.4 0.2 0.1 0.1 0.2
0.5 0.2 0.1 0 0.1

0.45 0.1 0.2 0.2 0
0.1 0.2 0.1 0.2 0.1

 .

Note that r(k)> 0 for all k. Thus, we can use the Nabla based algorithms as the first
column of the matrix has all its entries positive. We then derive the five matrices
which are in set P:
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M5,1 =


0.5 0 0 0.5 0
0.4 0.2 0.1 0.1 0.2
0.6 0.2 0.1 0 0.1
0.5 0.1 0.2 0.2 0
0.4 0.2 0.1 0.2 0.1

, M5,2 =


0.5 0 0 0.5 0
0.4 0.2 0.1 0.1 0.2
0.5 0.3 0.1 0 0.1

0.45 0.15 0.2 0.2 0
0.1 0.5 0.1 0.2 0.1

,

M5,3 =


0.5 0 0 0.5 0
0.4 0.2 0.1 0.1 0.2
0.5 0.2 0.2 0 0.1

0.45 0.1 0.25 0.2 0
0.1 0.2 0.4 0.2 0.1

, M5,4 =


0.5 0 0 0.5 0
0.4 0.2 0.1 0.1 0.2
0.5 0.2 0.1 0.1 0.1

0.45 0.1 0.2 0.25 0
0.1 0.2 0.1 0.5 0.1

,

M5,5 =


0.5 0 0 0.5 0
0.4 0.2 0.1 0.1 0.2
0.5 0.2 0.1 0 0.2

0.45 0.1 0.2 0.2 0.05
0.1 0.2 0.1 0.2 0.4

 .

The hybridation of Muntz and Nabla algorithms provides bounds at each itera-
tion. At iteration n = DiamL = 3, we obtain the first non trivial lower bound on each
component of the steady-state distribution. According to Table 2 the average time
before being absorbed knowing that the initial state is state 5 is bounded by:

2.0072≤ E[T5]≤ 2.5043.

n E[T5] E[T5] ||maxs{Y (n),s}||−1 1−||mins{X (n),s}||
3 1.8469 7.8571 0.4733 0.6623
4 1.9104 6.7711 0.3723 0.6009
13 2.0062 3.5435 0.1934 0.2671
34 2.0072 2.5982 0.1642 0.0910
64 2.0072 2.5078 0.1613 0.0745
84 2.0072 2.5043 0.1612 0.0739

1.5 Concluding remarks

We now plain to build a model checker for problems modeled with uncertain
Markov chain and which will be based on the results in [1] and the algorithms
we have presented here. Note that, we can also easily compute bounds on transient
probabilities which are only based on the positivity of the matrices.
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Proposition 1. Let L�M and XL
0 a positive vector such that ‖XL

0 ‖ ≤ 1 and XL
0 �

πM
0 then, we have for all k, XL

k � πM
k where πM

k is the distribution for the chain
(M, πM

0 ) and XL
k = XL

0 Lk.

It is also possible to obtain lower bounds on the probability of being absorbed
knowing a bound of the initial distribution.

Proposition 2. Let L �M such that L(i, i) = 1, for a state i. Let XL
0 be a positive

vector such that ‖XL
0 ‖ ≤ 1 and XL

0 � πM
0 . Then for all k, the probability of being ab-

sorbed at state i knowing a lower bound of the initial distribution is lower bounded
by (X0 Lk)(i) and upper bounded by (X0 Lk)(i)+ 1−∑ j 6=B(X0 Lk)( j), where B is
the set of absorbing points of L (i.e. L( j, j) = 1).

Thus, we have obtained a set of algorithms which looks sufficient to address the
numerical resolution of models based on uncertain discrete time Markov chains.
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