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Abstract—We evaluate the performance of a cloud system
using a hysteresis queueing system with phase-type and batch
arrivals. To represent the dynamic allocation of the resources, the
hysteresis queue activates and deactivates the virtual machines
according to the threshold values of the queue length. We suppose
a variable traffic intensity as the client requests (or jobs) arrive
by batches, and follow a phase-type process. This system is
represented by a complex Markov chain which is difficult to
analyze, especially when the size of the state space increases
and the length of batch arrival distribution is large. So, to
solve this problem, we propose to use stochastic bounds and
define bounding systems less complex. We give some results for
the performance measures and compare the proposed bounding
models with the exact one. The relevance of our methodology is to
offer a trade-off between computational complexity and accuracy
of the results and provide very interesting solutions for network
dimensioning.

I. INTRODUCTION

Over the past years, the cloud computing technology had an
impressive increase in popularity in both the software industry
and research worlds. Indeed, these systems allow to make a
better use of distributed resources, combine them to achieve
higher throughput and be able to solve large scale computation.
It provides ability for cloud consumers to use or implement
flexible and scalable services without having the computing
resources installed directly on consumer’s system. With this
flexibility, the cloud providers can rent the Virtual Machines
(VMs) depending on the demand and can gain more profit out
of a single Physical Machine (PM).

Performance evaluation of cloud centers is a very crucial
research task which becomes difficult due to the dynamic
behavior of cloud environments and variability of user de-
mand. In [1] for example, the authors develop an analytical
model to evaluate the performance of cloud centers with
a high degree of virtualization and Poisson batch arrives.
The model of the physical machine with m VMs is based
on the M [x]/G/m/m + r queue. To solve the model, they
adopt the technique of embedded Markov chain, and derive
exact formulas for different performance measures. In [2], the
authors analyze the performance of a large scale Iaas Clouds
using a multi-level interacting stochastic sub-models approach,
where the overall model solution is obtained iteratively over
individual sub-models solutions.

In this paper, we propose to represent the system by a
queueing model based on queue-dependent virtual machines

and analyze quantitatively the dynamic behavior of the data
center. The data center is represented by a set of PMs hosting a
set of VMs which are instanced according to user demand. The
considered queueing model is a multi-server with hysteresis
threshold queues [3]. And, in order to represent the variability
of customer requests, we suppose that arrivals are bulks and
follow a phase-type process.

We model the queueing system by a multidimensional
Markov chain. This model is difficult to solve as the size
of state space increases with the number of phases and the
number of VMs, and it becomes complex when the size
of bulk arrivals is high. For the resolution approach of this
model, we can use the Quasi Birth and Death (QBD) process
or Quasi Simultaneous-Multiple Births and Deaths (QBD-M)
process [4] which are used in the well-known web server
model. These modeling yields a matrix-geometric steady state
solution. However, we remark that for our problem it is
not an easy task to compute matrix Z, this observation was
also mentioned in [5] when they analyze a threshold-based
queueing system with hysteresis and Poisson input process. So
in this paper, we propose to have a different analysis approach.
In fact, in order to reduce the complexity of this problem
and have guarantees on performance mesures, we propose
to use stochastic comparisons and derive bounding systems.
Different bounding systems are defined: by simplifying the
behavior of the exact Markov chain, or by aggregating the
batch probability distributions. We prove using stochastic com-
parisons that these processes provide bounds for performance
measures as blocking probabilities and expected buffer length.
So, through these models we propose to offer a trade-off
between computational complexity and accuracy of results and
solve efficiently the network dimensioning problem and satisfy
the QoS (Quality of Service) constraints requirements.

The paper is organized as follows: next, we describe the
cloud system, and present the queueing model considered for
our analysis. In section III, we give some theoretical notions
about the stochastic ordering theory and in section IV, we
give the bounding models and we prove using the stochastic
comparisons that they are bounds of the original system. In
section V, we give some numerical results on performance
measures. Finally, we discuss the achieved results in the
conclusion and we comment about further research.



II. CLOUD SYSTEM AND MODEL DESCRIPTION

We focus our study on one data center with a set of
resources or physical machines which can host a lot of virtual
machines, as shown in Fig 1, and we propose to represent it
by a stochastic model based on a queueing system.

Fig. 1: Cloud center architecture

In order to have a system able to handle the variability of
the traffic intensities, the VMs are activated and deactivated
according to the system occupancy. In fact, the buffer manage-
ment is governed by thresholds of the number of customers
waiting in the queue, which activate or deactivate the VMs.
Clearly, when the number of customers in the queue reaches
a forward threshold, a new VM is activated, and when it
decreases below the reverse threshold, a VM is deactivated.
We present here after in details the queueing model used for
our analysis.

We consider a finite buffer capacity with multi-
homogeneous servers (VMs). We denote by C the capacity
of the queue. We suppose a K multi-server thresholds-based
queueing system with hysteresis for which a set of forward
thresholds (F1, F2, . . . , FK−1) and a set of reverse thresholds
(R1, R2, . . . , RK−1) are defined. We assume that Fi < Fi+1,
Ri < Ri+1, and Ri < Fi,∀ 1 ≤ i < K. The behavior of
this system is as follows. We assume that the first VM is
always active. If a customer arrives in the system, and finds
Fi (i=1,...,K−1) customers in the queue, an additional VM
will be activated. When a customer leaves the system with
Ri (i=1,...,K−1) customers, then one VM will be removed
from the set of active VMs. We assume here that the arrival
process is a phase-type process with batch arrivals. This
process is defined by Poisson arrivals modulated by phases,
with batch size distribution. Indeed, the phase-type process
has enough flexibility to describe a wide variety of data flows,
and its physical interpretation seems to describe arrival rate
fluctuations in many situations. The arrivals are Markovian
modulated by a phase process with ` states. We denote by
L = {1, 2, . . . , `} the set of phase values. The set of phases
corresponds to the different traffic intensity (variability or
burstiness). Let us denote by M the probability transition
matrix of this process, where M(i, j) is the probability
transition from phase i to phase j. Let {X(t), t ≥ 0} be
the stochastic process which model the behavior of the
hysteresis system. Each state is represented by a 3-tuple
(x1, x2, φ), where x1 is the number of customers waiting
in the queue (x1 ∈ {0, . . . , C}), x2 is the number of active
VMs (x2 ∈ {1, . . . ,K}), and φ expresses the arrival phase
(φ ∈ L = {1, 2, . . . , `}). For the traffic arrivals, we suppose

that at each phase φ, the bulk requests arrive according to
a Poisson process with rate λ(φ), and bulk size follows a
probability distribution pφ = (pφ(1), . . . , pφ(k), . . . , pφ(n)),
defined as follows, where E ⊂ N, and |E| = n:

pφ(k) = Pr[In phase φ, the bulk size is k], ∀k ∈ E,∀φ ∈ L,

Servers (or VMs) have an exponential service time distri-
bution with mean rate µi = µ (i = 1, . . . ,K).

With these assumptions, we deduce that the system X(t) is
a Continuous-Time Markov Chain (CTMC) defined over the
state space A = {(x1, x2, φ)|(x1, x2) ∈ B andφ ∈ L}, where:

B = {(x1, x2) | 0 ≤ x1 ≤ F1, if x2 = 1;

Ri−1 < x1 ≤ Fi, if x2 = i and 1 < i < K;

RK−1 < x1 ≤ C, if x2 = K}.

So, A = B × L.

We suppose that the arrivals take place first in the system,
and then we have a phase transition. The evolution equations
of X(t) are defined for i, j = 1, . . . ,K−1, as follows (where
φ, φ′ ∈ L):

(x1, x2, φ)→ (min{C, x1+k}, x2, φ′),with rate λφpφ(k)M(φ, φ′),

if (x1 + k) ≤ Fj , and x2 = j, j = 1, . . . ,K − 1,

→ (min{C, x1+k},K, φ′),with rate λφpφ(k)M(φ, φ′),

if x2 = K or (x1 + k) > FK−1,

→ (min{C, x1+k}, l, φ′),with rate λφpφ(k)M(φ, φ′),

if l = min{h|(x1+k ≤ Fh) and x2+1 ≤ h ≤ K-1},
→ (max{0, x1-1}, x2, φ),with rate x2µ,

if (x1 6= Ri + 1) or (x1 = Ri + 1 and x2 6= i+ 1)

→ (max{0, x1-1},max{0, x2-1}, φ),with rate x2µ,
if x1 = Ri + 1, and x2 = i+ 1.

We note that the threshold-based queue with hysteresis has
been already studied in the literature when arrivals follow Pois-
son and batch Poisson arrival processes [3], [5] and [6]. In [3],
the authors propose to use the Green’s function method which
is not so easy to apply as the formalism is not intuitive. And in
[5], the authors use the concept of stochastic complementation
to solve the system. They propose to partition the state space in
disjoints sets in order to aggregate the Markov chain. However,
we notice that in order to be able to capture correlations and
burstiness, since real traffic often exhibits these characteristics,
the consideration of the Poisson arrival process by batches is
not sufficient. Regarding to the context of our study, it was
natural to describe the arrival process of data center by phase-
type and batch arrivals. Indeed, using modulated arrivals in the
threshold-based queue with hysteresis seems more appropriate
and allows to capture better the properties of the network
traffic such as self-similarity and long-range dependence. And
we specify that these characteristics have significant impact
on network performance. Moreover, beyond investigating this
aspect, we propose in this paper to define bounding models
instead of performing an exact resolution of the system which
can be often very difficult. Before introducing our bounding



models, we give first the methodology used to solve the studied
threshold hysteresis model with batch phase-type arrivals.

A. Numerical Analysis

For the numerical analysis of the underlying CTMC
{X(t), t ≥ 0}, we propose to uniformize the chain and
derive a Discret Time Markov Chain (DTMC). Let Q be
the infinitesimal generator of X(t), we consider here the
uniformization of Q denoted by matrix P such that:

∀ q ≥ max
x∈A
|Q(x, x)|, P = I+

1

q
Q. (1)

Considering a phase-type arrival process with batches, we
note that the Markov chain of the hysteresis model {X(t), t ≥
0} is defined as a block structured matrix. Indeed, the struc-
tured matrix of the underlying DTMC can be expressed as
functional Kronecker products in the theory of stochastic
automata networks [7], [8].

To observe this, we can consider two states (x1, x2, x3)
and (y1, y2, y3) of the DTMC, and the probability transition
matrix Fφ of the system when the arrivals are in phase φ.
We denote that the probability transition matrix of the studied
Markov chain is defined as follows:

P((x1, x2, x3), (y1, y2, y3)) = M(x3, y3)Fx3((x1, x2), (y1, y2)).

Considering the ordinary lumpability and the rich structure
associated to the Kronecker representation, the authors in [8]
have developed an iterative steady-state solution method which
is able to compute performance measures for DTMCs. So,
based on this, we state the following property:

Property 1: The lumpability of the Markov chain for the
hysteresis model with batch phase-type arrivals can be inves-
tigated among the partition defined by the phase of the arrival
process.

We define by ϕ the steady-state probability distribution
of the probability transition matrix M. And let π(a) =
(π1, π2, . . . , π`) denotes the transient probability distribution
for the probability transition matrix P at time a, with ` the
number of phases. Due to the lumpability of P, there exist
` vectors πi of size |B| such that π has the following block
decomposition:

π(a) = (ϕ(1)π
(a)
1 |ϕ(2)π

(a)
2 |ϕ(3)π

(a)
3 | . . . |ϕ(`)π

(a)
` ).

To compute the steady-state solution of the model, we
use the Iterative Aggregation Disaggregation (IAD) algorithm
specialized for lumpable matrices published in [8]. Through
this algorithm, we obtain successive values of vectors π(a)

i .
We denote by π(a)

i the vectors computed at iteration a.
From the steady state distribution π of the CTMC

{X(t), t ≥ 0}, we can derive some performance measures
as the blocking probability and expected buffer length.

a) Blocking probability. This metric is computed as follows:
Bp =

∑
x2,x1,k

∑
φ π(x1, x2, φ) pφ(k)1{x1+k≥C}.

b) Expected buffer length. The expected buffer length is ex-
pressed as follows: E[π] =

∑
x1

(∑
x2

∑
φ π(x1, x2, φ)

)
x1.

Before introducing the proposed bounding models, we de-
scribe briefly the stochastic ordering theory.

III. STOCHASTIC ORDERING THEORY

We refer to Stoyan’s book [9] for theoretical issues of the
stochastic comparison method. We consider the state space G
endowed with a partial order denoted as �. Let X and Y be
two discrete random variables taking values on G, with cu-
mulative probability distributions FX and FY , and probability
distribution vectors p and q, where p(x) = Prob(X = x), and
q(x) = Prob(Y = x), for x ∈ G. Next, we give the definition
of the strong stochastic ordering �st:

Definition 1: We can define the �st ordering as follows:
• generic definition: X �st Y ⇐⇒ Ef(X) ≤ Ef(Y ),

for all non decreasing functions f : G → R+ whenever
expectations exist.

Notice that we use interchangeably X �st Y , and p �st q.
We give also the definition for stochastic comparisons of

stochastic processes. Let {X(t), t ≥ 0} and {Y (t), t ≥ 0} be
stochastic processes defined on G.

Definition 2: We say that {X(t), t ≥ 0} �st
{Y (t), t ≥ 0} , if X(t) �st Y (t),∀t ≥ 0.
When the processes are defined on different states spaces we
can compare them on a common state space using mapping
functions. Let {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0}) be defined
on A (resp. B), g (resp. h) be a many to one mapping from
A to S, (resp. B → S). Next, we compare the mapping of the
process {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0}) by the mapping
function g (resp. h), which means g(X(t)) (resp. h(Y (t))),
on the common space S, endowed with the partial order �.

The stochastic comparisons of processes by mapping func-
tions is defined as follows [10]:

Definition 3: We say that {g(X(t)), t ≥ 0} �st
{h(Y (t)), t ≥ 0} , if g(X(t)) �st h(Y (t)),∀t ≥ 0
We can use the coupling method for the stochastic comparison
of the processes. As presented in [10], it remains us to define
two CTMCs: {X̂(t), t ≥ 0} and {Ŷ (t), t ≥ 0} governed
by the same infinitesimal generator matrix respectively as
{X(t), t ≥ 0}, and {Y (t), t ≥ 0}, representing different
realizations of these processes with different initial conditions.
The following theorem establishes the �st-comparison using
the coupling [10]:

Theorem 1: {g(X(t)), t ≥ 0} �st {h(Y (t)), t ≥ 0} , if
there exists the coupling {(X̂(t), Ŷ (t)), t ≥ 0} such that:

g(X̂(0)) � h(Ŷ (0))⇒ g(X̂(t)) � h(Ŷ (t)), ∀t > 0.

IV. BOUNDING SYSTEMS

We propose to define different bounding systems which are
easier to solve. Different ways to simplify the exact system
are used. The first bounding systems are defined by reducing
the size of the bulk arrivals and aggregating the probability
distribution of bulk arrivals. The second bounding models are
obtained by taking the same sequences of forward and reverse
thresholds. We describe next the proposed bounding models.

A. Hysteresis system with aggregated bounding arrivals

We derive from the original system ({X(t), t ≥ 0}) bound-
ing models (upper and lower bounds) which are equivalent to



the original one except the probability distribution of size bulk
arrivals of each phase in the system. The arrival process of the
bounding models are defined as follows: for each phase φ ∈ L,
the arrivals of bulks follow a Poisson process with the rate
λφ, and the size batches will follows a probability distribution
puφ (resp. plφ) for the upper bound (resp. the lower bound).
The probability distributions of the batches for the bounds are
obtained by aggregations, according to the following relation:
pφ ≤st puφ and plφ ≤st pφ.

If pφ is defined on a state space of size n, then puφ
(resp. plφ) is defined on a state space of size m, such that
m� n. Moreover, puφ and plφ are computed to be the closest
distributions with m states [11], according to an increasing
reward function. Intuitively, the probability distribution puφ
(resp. plφ) has been obtained by removing some states of pφ
and by adding their probabilities into higher states (resp. lower
states). The optimality of the computed bounding distributions,
proved in [11], helps to obtain tight bounds on the results.

We denote by Xu(t) (resp. X l(t)) the threshold-hysteresis
system built with the bulk arrival probability distribution puφ
(resp. plφ), where φ ∈ L. We note that the aggregation of
the batch arrival distribution, allow to reduce significantly the
number of non-zero element in the transition matrix, allowing
therefore to reduce the computational complexity of the model.
Next, we prove that these Markov chains represent stochastic
bounds for X(t).

1) Stochastic comparison of the systems: We define the
many to one mapping function g : A → S, such that for
x = (x1, x2, φ) ∈ A, g(x) = (x1, φ), where x1 ∈ {0, . . . , C}.
In the state space S, if we consider u, v ∈ S, where
v = (v1, v2) and w = (w1, w2) we define the following partial
order: ∀v, w ∈ S, v � w ⇔ v1 ≤ w1, v2 = w2.

Note that for states v (resp. w), v1 (resp. w1) represents the
number of customers in the queue, and v2 (resp. w2) is the
phase. So, the order is defined for states in the same phase,
and compare the number of customers in the systems.

Theorem 2: We have the following relations:
• g(X(0)) �st g(Xu(0))⇒ g(X(t)) �st g(Xu(t)), t > 0.
• g(X l(0)) �st g(X(0))⇒ g(X l(t)) �st g(X(t)), t > 0.

Proof: We use Theorem 1 based on the coupling of the
processes. We begin with the first relation of Theorem 2, in
order to establish that {Xu(t), t ≥ 0} is really an upper bound.
For the proof, we suppose that at time t, g(Xu(t)) = v =
(v1, v2), and g(X(t)) = w = (w1, w2), where v2 = w2 = φ.
The proof is by induction. We suppose that the order is verified
at time t (v � w), and we prove that at time t + dt the
order is still verified. We denote by g(X(t + dt)) = v′ and
g(Xu(t+ dt)) = w′. We consider the two kinds of events:
• Arrivals: if we have a batch arrival of size k in X(t)

such that at time t+ dt, v′1 = v1 + k, then we can have
also a transition from w to w′ such that w′1 = w1 + l,
and k ≤ l, as pφ ≤st puφ. So v′ � w′, and the order is
still verified at time t+ dt.

• Services: if we have a service for Xu(t) such that at time
t+ dt, w′1 = w1 − 1, then we can have also a service in

X(t) such that at time t + dt, we have v′1 = v1 − 1, as
the transition rates are the same in the two systems.

For the lower bound {X l(t), t ≥ 0}, the proof is similar as
we consider the stochastic ordering between the batch arrival
probability distributions: plφ ≤st pφ, and the same service rates
in the two systems. Then, the second relation of Theorem
2 is verified. Note that as the stochastic comparison of the
processes is made by the mapping g, then it allows to compare
the processes from the number of customers waiting in the
system. So, this generates the comparison on performance
measures as the mean number of customers waiting in the
system, and blocking probabilities.

2) Bounds on performance measures: Let π(t), u (resp.
π(t), l) be the transient distribution of {Xu(t), t ≥ 0} (resp.
{X l(t), t ≥ 0}). From Theorem 2, we have the following
proposition:

Proposition 1: ∀ a ∈ {0, . . . , C}, and ∀φ ∈ L, we have:∑
x1≥a

∑
x2

π(t)(x1, x2, φ) ≤
∑
x1≥a

∑
x2

π(t), u(x1, x2, φ)

and
∑
x1≥a

∑
x2

π(t), l(x1, x2, φ) ≤
∑
x1≥a

∑
x2

π(t)(x1, x2, φ).

As in proposition 1 the inequalities are considered for each
phase, then we have the following inequality (for the upper
bound):∑
x1≥a

∑
x2

∑
φ

π(t)(x1, x2, φ) ≤
∑
x1≥a

∑
x2

∑
φ

π(t), u(x1, x2, φ).

Obviously, for the lower bound, the inequality on the
probability distributions is reversed. As the expectation of the
number of customers is an increasing function, we deduce that
the relation is maintained. Idem for blocking probabilities.

B. Bounding systems with equal forward & reverse sequence
Considering the same forward and reverse thresholds vec-

tors, we derive upper and lower bounding models for the
threshold queueing system with hysteresis. For the upper
bound, we take (F1, . . . , FK-1) as a forward and reverse
thresholds. And, for the lower bound, we take (R1, . . . , RK-1)
as forward and the reverse thresholds. This modification allows
us to reduce the size of the state space of X(t).

The behavior of each of these systems are represented by
CTMCs defined on S. We denote by Y (t) the CTMC associ-
ated to the upper bounding model.The evolution equation of
this model is given as follows (where φ, φ′ ∈ L and F0 = 0):

(x, φ) → min((C, x1 + k), φ′), (2)
with rate λφpφ(k)M(φ, φ′), ∀ k ∈ E

→ max((0, x1 − 1), φ),with rates: (3)
• iµ, if Fi−1 < x1 ≤ Fi, ∀i = 1 . . .K − 1

• Kµ, if FK−1 < x1 ≤ C
In the same way, we define by Z(t) the CTMC which

represents the lower bound model. In this case, the above
equations ((4)-(5)) are also available by changing the sequence
Fi, i=1...K−1, by the sequence Ri, i=1...K−1.

Next, we will prove that Y (t) (resp. Z(t)) is a stochastic
upper bound (resp. lower bound) for X(t).



1) Stochastic comparison proofs: We have the following:
Theorem 3: If X(t), Y (t), and Z(t) represent the systems

defined previously, then we have:
1) g(X(0)) �st Y (0)⇒ g(X(t)) �st Y (t),∀t > 0
2) Z(0) �st g(X(0))⇒ Z(t) �st g(X(t)),∀t > 0

Proof: We begin by the first equation of Theorem 3. For
the proof, we apply Theorem 1. In our case, we have X(t)
defined on A, g a mapping function A → S, Y (t) defined
on S, and h is the identity function. The proof is done by
induction: we consider X(t) = (x1, x2, φ), so g(X(t)) = x =
(x1, φ) and Y (t) = y = (y1, φ), such that g(x) � y and
we prove that for any event, at time t + dt, if X(t + dt) =
x′ = (x′1, x

′
2, φ
′), and Y (t + dt) = y′, then g(x′) � y′. In

fact, for states x and y such that g(x) � y, we consider the
two events for the proof of the stochastic comparison by the
mapping function g:
• Arrivals: if we have a transition from x to x′ such that
x′1 = x1 + k (for k > 0) then we are sure that we can
have also a transition from y to y′ such that y′ = y + l
(for l > 0), because the arrival rates in the phase φ are the
same in the two systems. So, we deduce that g(x′) � y′.

• Services: if we have a transition from y to y′ such that
y′1 = y1−1, then we are sure that we have also a transition
from x to x′ such that x′1 = x1 − 1, because the rate
for decreasing in Y (t) is lower than in X(t) ( as the
threshold for deactivation is lower in X(t) than in Y (t)).
So, g(x′) � y′.

So, we deduce that for any events, we have: g(X(t+dt)) �
Y (t+ dt), and from Theorem 1, we deduce that in Theorem
3, equation 1 is verified. For the second equation of Theorem
3, the proof is similar to deduce that Z(t) is a lower bound.

2) Bounds on performance measures: Let denote by π,
πY and πZ the steady state distributions of {X(t), t ≥ 0},
{Y (t), t ≥ 0} and {Z(t), t ≥ 0}). From the Theorem 3, we
have the following proposition:

Proposition 2: ∀φ ∈ L, ∀ a ∈ N+ and ∀x2 ∈ {1, . . . , K},

we have:
∑
x1≥a

∑
x2

π(t)(x1, x2, φ) ≤
∑
x1≥a

π
(t)
Y (x1, φ), and

∑
x1≥a

π
(t)
Z (x1, φ) ≤

∑
x1≥a

∑
x2

π(t)(x1, x2, φ).

We deduce from the Proposition 2 the comparison on perfor-
mance measures.

C. Other bounding models

An other simplification of previous bounding models con-
sists to aggregate the batch arrival distribution of each phase
for Y (t) and Z(t). We denote by Y u(t) (resp. Zl(t)) the
Markov chain with batch arrival distribution puφ (resp. plφ),
for all φ ∈ L.

Theorem 4: We have the following relations:
• Y (0) �st Y u(0)⇒ Y (t) �st Y u(t), t > 0.
• Zl(0) �st Z(0)⇒ Zl(t) �st Z(t), t > 0.

The proof is similar to Theorem 2.

By transitivity, from Theorem 3 and Theorem 4, we deduce
that Y u(t) (resp. Zl(t)) represents an upper bound (resp. lower
bound) of X(t).

To illustrate the relevance of proposed models, we present
next some numerical results.

V. NUMERICAL EXAMPLES

We propose in this section to illustrate the impact of
our bounding models on satisfying the QoS constraints and
reducing the computational complexity of a threshold-based
queue with hysteresis and batch phase-type arrival process.
For this example, we propose to compute some performance
measures as blocking probabilities and expected buffer length.

We consider a threshold-based queue with hysteresis, two
phases-type input process with batches and 50 homogeneous
servers. For the phase-type arrivals, we propose to illustrate
the batch probability distribution of the phases by considering
the Facebook cluster trace, namely the Statistical Workload
Injector for MapReduce (SWIM) [12]. Typically, this is the
workload replay scripts to generate the real-life workloads
from a Facebook production system. This realistic data set
synthesized day-long workloads, namely Facebook trace 02
(FB-2010 samples 24 times 1hr 0.tsv) is studied. The set
contains 24 historical traces sampled on a 600-machines
cluster. For a sampling period of 60 seconds, Figure 2 shows
the trace of data size input (input size jobs in bytes) per slot.
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Fig. 2: Traffic trace of day-long workload from a Facebook
production system (FB-2010 samples 24 times 1hr 0.tsv).

From this trace, we propose to distinguish two phases, phase
1 with a high arrival traffic rate and small data size, and phase
2 with low arrival rate and larger data size. So, we consider
that for data size less than 800 GB (Gigabytes) the arrival
phase is 1 otherwise the arrival phase is 2. The probability
transition matrix for phase modulation is obtained as follows:

M(i, j) =
number of transitions from phase i to phase j

number of batch in phase i
, ∀i, j ∈ L.

Therefore, the resulting transition matrix of phases M is:

M =

(
0.7758 0.2233
0.7164 0.2836

)
, whereL ∈ {1, 2}.

In order to analyze this model, we consider a queue with
service rate of 5 103 jobs/mn, an arrival rates λ1=100 jobs/mn
and λ2=50 jobs/mn with an utilization of 80% of the system,
and we vary the buffer size from 10 TB to 100 TB. According
to the buffer size, we use the following equation to define
respectively the forward and the reverse threshold vectors:
F = (bCK c, 2×b

C
K c, . . . , (K-1)×bCK c) and Ri = Fi-b C2K c,

for i = 1, . . . ,K-1. In this example, we introduce a data unit
which gathers a constant number of bytes (say D) in order



to reduce the sizes, and hence the complexity of underlying
models. So, for these numerical computations, we have taken
a data unit equal to 1Gb which is the batch unit. Depending
on the value of the buffer size (C), we present in tables I,
II the blocking probabilities and the expected buffer length
obtained for the different studied models at steady state. We
report also in Table III the computation times needed to solve
these models. We note that for the models: X l(t), Xu(t),
Zl(t) and Y u(t), the reduction applied on the distributions of
the data size for the two phases is m = 10.

From tables I and II, we remark that the proposed models
provide clearly bounds on performance measures of X(t)
(lower bounds for the models X l(t), Z(t) and Zl(t) and upper
bounds for the models Xu(t), Y (t) and Y u(t)). We can also
see that the results provided by our models are very accurate
(the bounds are close to the exact results).

(a)
C (GB) X(t) Xl(t) Xu(t)
104 0.000381892 0.000342812 0.000456201
3 104 7.64789 e-5 6.96193 e-5 8.00854 e-4
5 104 2.82538 e-5 1.42637 e-5 4.09931 e-5
105 5.82711 e-6 5.51383 e-6 6.23808 e-6

(b)
C Z(t) Zl(t) Y (t) Y u(t)
104 0.0003619 0.0003328 0.0004020 0.0004762
3 104 6.2792 e-5 5.3860 e-5 8.2775 e-5 8.91217 e-5
5 104 2.3361 e-5 1.4314 e-5 3.2376 e-5 4.3175 e-5
105 5.1265 e-6 5.5008 e-6 5.9516 e-6 6.2713 e-6

TABLE I: Blocking probabilities versus buffer size.

(a)
C X(t) Xl(t) Xu(t)

104 8.6014e+3 8.40617e+3 8.72384e+3
3 104 1.60545e+4 1.59461e+4 1.61962e+4
5 104 2.56954e+4 2.5586e+4 2.58423e+4
105 4.83833e+4 4.82183e+4 4.86226e+4

(b)
C Z(t) Zl(t) Y (t) Y u(t)
104 8.6009e+3 8.4057e+3 8.6067e+3 8.725e+3
3 104 1.6037e+4 1.5985e+4 1.6197e+4 1.6348e+4
5 104 2.5632e+4 2.5602e+4 2.5947e+4 2.6141e+13
105 4.8190e+4 4.8052e+4 4.8820e+4 4.9222e+4

TABLE II: Expected buffer length versus buffer size (in GB).

C (GB) X(t) Xl(t) Xu(t) Z(t) Zl(t) Y (t) Y u(t)
104 136 20 23 99 11 107 21
3 104 277 34 39 122 21 100 29
5 104 406 51 53 242 34 259 35
105 1465 111 119 928 76 1001 97

TABLE III: Computation times (seconds) versus buffer size.

Regarding to the execution times (Table III), we observe
that the bounding models are less complex than the original
one, particularly for the models with an aggregation of the
batch arrival distributions.

Indeed, we notice that the models X l(t), Xu(t), Zl(t)
and Y u(t) allows to reduce the computational time of the
model X(t) by 4, 6 and even by 15 depending on the
size of the buffer. To conclude, we can say that the exact
performance metrics of the original model can be bounded

using the proposed models with relatively small computation
complexity. And, we recall also that the purpose of using these
bounding models is to offer to the user an interesting trade-
off between accuracy of the results and the computational
complexity in order to satisfy the required QoS constraints.

VI. CONCLUSION

We propose in this paper to model the behavior of a
data center in a cloud system by a queue-dependent multi-
server VMs with hysteresis. The relevance of this model is
to represent the dynamicity of the resource according to the
queue occupation, and the variable intensity of the demand
by a phase-type process arrival with batches. As this system
could be difficult to analyse when the state space increases,
we propose here to use bounding techniques in order to derive
bounds on the performance measures. We show clearly in
this paper the relevance of the proposed bounding models in
term of accuracy of the results and reduction of computational
complexity. As a future work, we try to adapt our method-
ology to analyze hysteresis model with more general input
process and we also investigate methods which allow us to
define an optimal thresholds vectors in order to optimize the
performance of cloud systems.
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